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Abstract. This paper proposes an alternative solution formula for the logistic model, which
is derived by substituting the exponential function with the Mittag-Leffler function in the
solution of the first-order logistic model. Then, it developed two nonstandard finite difference
approaches to solve the fractional logistic model. One method employed Mickens’s concepts
to construct a nonstandard finite difference scheme, under the assumption that the analytical
solution is unknown. The second method relies on the proposed analytical solution of the
fractional logistic model. Surprisingly the two nonstandard finite difference algorithms are
exactly the same. The convergence of the nonstandard finite difference scheme is proven by
establishing its consistency and stability. Furthermore, it has been proven that the proposed
numerical method is unconditionally stable. The performance of the method is demonstrated
through two numerical examples selected from literature.
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1. Introduction

The fractional logistic model has many real-world applications that arise in many
fields, including biology, mathematics and geophysics, population growth, spread of
diseases, and diffusion in social networks [1-3]. The fractional logistic model is seen
as an extension of the classical logistic model.

The fractional version of the logistic model has many advantages over the classical
first-order logistic model. One of the most important advantages is the memory effect
(inherited from the kernel of the fractional differential operator), which suggests that
the dependent variable’s history impacts its present state, resulting in a more accurate
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model [4]. When considering this advantage, the fractional logistic model would be
more suited to modeling complex real-world systems [1].

We consider the fractional order logistic model with Caputo differential operator
[5, 6] of the form

C
0Dαt u(t) = λu(t)(1−u(t)), u(0) = u0, 0 < α ≤ 1. (1)

When α = 1, we obtain the classical first-order logistic differential equation. This dif-
ferential equation is solved by separating variables, using partial fractions, integrating
and substituting the initial condition to obtain a solution of the form

u(t) =
u0eλt

(1−u0)+u0eλt
(2)

Since the exponential function ex possesses the property ea/eb = ea−b, equation (2)
can be written in equivalent form as

u(t) =
u0

u0+ (1−u0)e−λt
. (3)

The fractional logistic model (1) has two equilibrium points, u1
eq = 0 and u2

eq = 0,
which can be obtained by solving

C
0Dαt u(t) = λu(t)(1−u(t)) = 0.

The first equilibrium point u1
eq = 0 is unstable. But the second equilibrium point

u2
eq = 1 is stable.

However, the exact solution for the fractional logistic model of order α for
0< α< 1 is unknown. Several attempts have been made to obtain numerical solutions
for the fractional logistic model.

El-Sayed et al. [7] investigated the stability of the fractional logistic equation and
used a one-step Adam-type predictor corrector approach to solve the logistic equation
numerically.

Based on the iterative technique provided in [8], Bhalekar and Daftardar-Gejji [9]
proposed an iterative method for solving the fractional logistic model, and compared
the resulting solution to the Adomian decomposition method (ADM) and the homo-
topy perturbation method (HPM). They came to the conclusion that the solutions by
the NIM were more stable than those obtained by ADM and HPM.

A novel formula for approximating fractional derivatives is developed using
the generalized Laguerre polynomials in [10]. These fractional derivatives were
expressed using the Caputo sense and were utilized to solve the fractional Logistic
differential equation.

In [11], a collocation method utilizing fractional B-splines was developed to
address a fractional nonlinear differential equation. The utilization of fractional
B-splines enabled the computation of the fractional derivatives of the approximation
function in an analytical form.
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Arshad et al. [12] presented a novel 2-stage fractional Runge-Kutta method for
the fractional logistic growth model using the fractional Taylor series with order
0 < α ≤ 1. For α = 1, they found that the solution obtained by their proposed method
is convergent to the exact solution. They concluded that the proposed approach may
be used to generate higher order fractional Runge-Kutta methods.

Using a series of fractional powers, Area and Neito [13] proposed a depiction
of the fractional logistic equation solution. In simpler terms, they investigated the
simplest example and demonstrated that the power series is the exact solution.

West [14] proposed an exact solution using Laplace transform for the fractional
logistic equation by substituting the Mittag-Leffler function Eα(λtα) for the exponen-
tial function eλt in equation (3), yielding a solution of the form

u(t) =
u0

u0+ (1−u0)Eα(−λtα)
, (4)

Later on, Area et al. [15] revealed that the solution (4) of the fractional logistic
model (1) proposed by West in [14] is only accurate when α = 1. The reason for this
is that the Mittag-Leffler function does not exhibit the property

Eα(a(t+ s)α) = Eα(atα) ·Eα(asα),

as in the exponential function.
Equation (2) suggests an analytical solution for the fractional logistic model (1)

of the form:

u(t) =
u0Eα(λtα)

(1−u0)+u0Eα(λtα)
. (5)

The objective of this paper is to construct a nonstandard finite difference technique
(NSFD) for solving the fractional logistic equation (1). Then, compare the solutions
produced using the nonstandard finite difference scheme for (5), to those obtained
in [8] and [14]. The fractional differential equations will be discretized with the
generalized fractional Taylor series expansion, which employs Caputo fractional
derivatives.

The main contributions of the paper are that it presents an alternative solution
formula for the fractional logistic model, derived from the solution form of the clas-
sical logistic model and proposes an exact finite difference scheme for solving it.

The rest of the paper is structured as follows: In Section 2 we construct finite
difference schemes for the fractional logistic model. Section 3 discusses the conver-
gence and stability of the proposed nonstandard finite difference method. Section 4
illustrates numerical examples for different values of α and compares them to the
analytical solution to demonstrate the accuracy of the numerical solution. Section 5
contains the conclusions.
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2. Nonstandard finite difference scheme for the fractional logistic model

In [16], Mickens derived an exact finite difference scheme for solving a first order
logistic equation. The denominator function was constructed from the exact solution
of the linear part of the differential equation, whereas a nonlocal approximation was
used for the nonlinear part. In this section, we construct a nonstandard finite differ-
ence scheme for the fractional logistic model (1).

2.1. The nonstandard finite difference scheme

By considering the linear part of the fractional logistic model, we obtain a frac-
tional growth model

C
0Dαt u = λu, u(0) = u0, 0 < α < 1, (6)

whose exact solution is given as

u(t) = u0Eα(λtα) (7)

where Eα(λtα) is the Mittag-Leffler function, defined by

Eα(t) =
∞∑

k=0

tk

Γ(αk+1)

Following [17], a suitable denominator function ϕk that depends on k,h,λ and α
can be chosen as

ϕk(h,λ,α) =

Eα(λ(hk)α)
Eα(λ(hk−h)α)

−1

λ
, k = 1, . . . ,N. (8)

The nonlinear term u2(t) is approximated at t= tk, using a nonlinear approximation
as u2(tk) ≈ uk−1 ·uk, yielding a nonstandard finite difference method

uk −uk−1

ϕk(h,λ,α)
(9)

where

ϕk(h,λ,α) =

(
Eα(λ(hk)α)

Eα(λ(hk−h)α)
−1

)
λ

,

Equation (9) can be written as

uk =
(1+λϕk)uk−1

1+λϕkuk−1
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2.2. Constructing a nonstandard finite difference scheme from (2)

In this section, we construct a nonstandard finite difference for solving the frac-
tional logistic model (1).

The corresponding difference equation for (2) is∣∣∣∣∣∣∣∣∣∣∣∣
uk−1

uk−1−1
Eα(λ(h(k−1))α)

uk

uk −1
Eα(λ(hk)α)

∣∣∣∣∣∣∣∣∣∣∣∣ =
uk−1

uk−1−1
Eα(λ(hk)α)−

uk

uk −1
Eα(λ(h(k−1))α) = 0

By applying few algebraic processes, we obtain

uk = uk−1

(
Eα(λ(hk)α)

Eα(λ(hk−h)α)

)
−ukuk−1

(
Eα(λ(hk)α)

Eα(λ(hk−h)α)

)
+ukuk−1

Subtracting uk−1 from both sides, simplifying and multiplying both sides by λ, lead
to the nonstandard finite difference scheme

uk −uk−1(
Eα(λ(hk)α)

Eα(λ(hk−h)α)
−1

)
λ

= λuk−1(1−uk) (10)

The nonstandard finite difference scheme for the logistic model, as obtained from
the solution provided by equation (2) and represented by equation (10), is equivalent
to the numerical scheme represented by Equation (9).

Therefore, the best nonstandard finite difference scheme for the fractional logis-
tic differential equation (1) is obtained by creating the denominator function using
the linear term and utilizing a nonlocal approximation for the nonlinear term. This
approach expands upon the methodology of developing a nonstandard finite differ-
ence scheme for the first-order logistic model, as described in [16].

3. Convergence and stability of the nonstandard finite difference scheme

Now we prove the convergence of the nonstandard finite difference scheme (9).
From Taylor expansion for fractional derivatives:

u(tk) = u(tk−1)+
hα

Γ(α+1)
C
0Dαt (u(tk−1))+

h2α

Γ(2α+1)
C
0D2α

t (u(ξ)), ξ ∈ (tk−1, tk)

From which,

C
0Dαt (u(tk−1)) =

u(tk)−u(tk−1)
hα
Γ(α+1)

−
Γ(α+1)
Γ(2α+1)

hα C
0D2α

t (u(ξ)) =
u(tk)−u(tk−1)

hα
Γ(α+1)

+O
(
hα

)
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At t = tk−1,

C
0Dαt (u(tk−1)) = λu(tk−1)(1−u(tk−1)) = λu(tk−1)−λu2(tk−1)

⇒
u(tk)−u(tk−1)

hα
Γ(α+1)

−λu(tk−1)−λu2(tk−1) = O
(
hα

)
(11)

The local truncation error of (9) at the point t = tk denoted by LT Ek is:

LT Ek =
u(tk)−u(tk−1)
ϕk(h,λ,α)

−λu(tk−1)(1−u(tk)) (12)

By adding and subtracting the term
u(tk)−u(tk−1)

hα
Γ(α+1)

, we obtain

LT Ek =

 1
ϕk
−

1
hα
Γ(α+1)

 (u(tk)−u(tk−1))−λu(tk−1)+λu(tk−1)(u(tk−1)+O(h))

Now,

|LT Ek| ≤

∣∣∣∣∣∣∣
 1
ϕk
−

1
hα
Γ(α+1)

 (u(tk)−u(tk−1))

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣u(tk)−u(tk−1)
hα
Γ(α+1)

−λu(tk−1)(u(tk−1)+O(h))

∣∣∣∣∣∣∣
=

∣∣∣∣ hα
Γ(α+1) −ϕk

∣∣∣∣
ϕk

∣∣∣∣∣∣∣ (u(tk)−u(tk−1))
hα
Γ(α+1)

∣∣∣∣∣∣∣+ |O(hα)|+ |O(h)|

=

∣∣∣∣ hα
Γ(α+1) −ϕk

∣∣∣∣
ϕk

∣∣∣O(hα)
∣∣∣+ |O(hα)|+ |O(h)|) (13)

From equation (13), we notice that |LT Ek|→ 0 as h→ 0, which proves the consistency
of the numerical scheme (9).

To prove the stability of the numerical scheme (9), let ek = u(tk)− uk, we prove
that ek→ 0 as k→∞. The numerical scheme (9) can be written as:

uk = uk−1+λϕkuk−1−λϕkuk−1uk (14)

Substituting u(tk) instead of uk in (14), we obtain

u(tk) = u(tk−1)+λϕku(tk−1)−λϕku(tk−1)u(tk) (15)

By subtracting (14) from (15) and substituting ek = u(tk)−uk, we obtain

ek = ek−1+λϕkek−1−λϕ(u(tk)u(tk−1)−ukuk−1)

= (1+λϕk)ek−1−λϕk(u(tk)u(tk−1)−u(tk)uk−1+u(tk)uk−1−ukuk−1)
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Hence,

(1+λϕkuk−1)ek = (1+λϕk(1−u(tk)))ek−1

Now,

ek =
1+λϕk(1−u(tk))

1+λϕkuk−1
ek−1 =

 k∏
n=1

1+λϕn(1−u(tn))
1+λϕnun−1

e0 (16)

Considering equation (16), we observe that as the value of k→∞, u(tk)→ 1 = u2
eq.

Consequently, 1−u(tk)→ 0, resulting in the expression k∏
n=1

1+λϕn(1−u(tn))
1+λϕnun−1

→ 0,

and therefore, ek→ 0.
This demonstrates that the numerical scheme represented by equation (9) is

unconditionally stable.
Since the nonstandard finite difference scheme (9) is both consistent and stable,

it is convergent. Hence, we have the following main theorem.

Theorem 1 The nonstandard finite difference scheme described by equation (9)
is convergent of order O(hα) and is unconditionally stable. □

4. Numerical results

Example 1 Consider the fractional logistic equation [7]

C
0Dαt u(t) = 0.5u(t)(1−u(t)), u(0) = 0.1, α = 0.1, 0.3, 0.5, 0.7, 0.9, 1.0

The proposed analytical solution

u(t) =
0.1Eα(0.5tα)

0.1Eα(0.5tα)+0.9

and West’s solution

u(t) =
0.1

0.1+0.9Eα(0.5tα)

Figures 1a-1f depict a comparison between the solution obtained by (14) and West’s
solution for different values of α.

The nonstandard finite difference scheme is of the form:

uk −uk−1

ϕk(h)
= 0.5uk−1(1−uk), where ϕk(h) =

 E 1
2
(0.5(hk)

1
2 )

E 1
2
(0.5(hk−h)

1
2 )
−1


0.5
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(a) α = 0.1
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(b) α = 0.30
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(c) α = 0.5
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(d) α = 0.70
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(e) α = 0.90
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(f) α = 1.00

Fig. 1. Solutions of the fractional logistic model using the proposed and West solutions for
α = 0.1,0.3,0.5,0.7,0.9,1.0

That is

uk =
(1+0.5ϕk)uk−1

1+0.5ϕkuk−1

The absolute errors of the nonstandard finite difference method for Example 1 are
demonstrated in Table 1 using various step sizes h = 1.0, 1.0, 2.0, 5,0, 10.0, 20.0,
25.0, 50.0, and values of α (0.1,0.3,0.5,0.7,0.9 and 1.0).

Table 1. Computed infinity norm errors corresponding to different values of α, for Example 1

h α = 0.1 α = 0.3 α = 0.5 α = 0.7 α = 0.9 α = 1.0
1.0 2.36e-16 1.11e-16 8.88e-16 6.66e-16 4.44e-16 4.44e-16
2.0 9.71e-17 2.50e-16 3.33e-16 3.33e-16 3.33e-16 3.33e-16
5.0 4.16e-17 1.11e-16 2.22e-16 1.11e-16 2.22e-16 2.22e-16

10.0 9.71e-17 2.78e-17 2.22e-16 2.22e-16 2.22e-16 2.22e-16
20.0 1.39e-17 2.78e-17 5.55e-17 1.11e-16 2.22e-16 1.11e-16
25.0 1.39e-17 2.78e-17 8.33e-17 1.11e-16 1.11e-16 2.22e-16
50.0 0.00 2.78e-17 1.11e-16 0.00 1.11e-16 2.22e-16
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Table 1 demonstrates that most of the obtained absolute errors computed by the
numerical scheme (9) for different step sizes lie within the machine precision, includ-
ing large step sizes. This indicates that the nonstandard finite difference scheme is
nearly exact and is highly stable.

Example 2 Consider the following fractional logistic equation [7]

C
0Dαt x(t) = 0.5x(t)(1− x(t)), t ∈ [0,30], x(0) = 0.85

where α ∈ {0.155,0.499,0.805,0.955,1.0}.
The proposed analytical solution is of the form:

x(t) =
x0Eα(0.5tα)

x0Eα(0.5tα)+ (1− x0)

The nonstandard finite difference scheme is given by:

xk − xk−1

ϕk
= 0.5xk−1(1− xk) where ϕk =

Eα(0.5(hk)α)
Eα(0.5(hk−h)α)

−1

0.5

That is

xk =
(1+0.5ϕk)xk−1

1+0.5ϕkxk−1

Figures 2a and 2b illustrate the solutions of the fractional logistic model obtained
by the proposed and West methods for α ∈ {0.155,0.499,0.805,0.955,1.0} in the inter-
val [0,20]. They demonstrate that the solution achieved by the proposed nonstandard
finite difference scheme converges to the carrying capacity of the logistic model more
rapidly than West’s solution.
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Fig. 2. Solutions of the fractional logistic model using the proposed and West solutions for
α = 0.155,0.499,0.805,0.955,1.0

Next, we solve Example 2 for different values of h, especially 0.5, 1.0, 1.5, 2.0,
3.0, 5.0, 6.0, 10.0 and 15.0, using the numerical method (14). The absolute errors
generated by these computations are subsequently calculated and summarized in
Table 2.
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Table 2. Computed infinity norm errors corresponding to different values of α, for Example 2

h α = 0.155 α = 0.499 α = 0.805 α = 0.955 α = 1.0
0.50 5.551e-16 4.44e-16 3.33e-16 3.33e-16 4.44e-16
1.00 3.33e-16 2.22e-16 2.22e-16 3.33e-16 2.22e-16
1.50 5.55e-16 1.11e-16 2.22e-16 2.22e-16 3.33e-16
2.00 3.33e-16 2.22e-16 2.22e-16 2.22e-16 2.22e-16
3.00 2.22e-16 3.33e-16 1.11e-16 2.22e-16 2.22e-16
5.00 2.22e-16 1.11e-16 2.22e-16 1.11e-16 2.22e-16
6.00 1.11e-16 1.11e-16 1.11e-16 1.11e-16 2.22e-16

10.00 2.22e-16 2.22e-16 1.11e-16 1.11e-16 0.00
15.00 1.11e-16 2.22e-16 2.22e-16 1.11e-16 1.11e-16

From Table 2, most of the obtained absolute errors obtained by the numerical
scheme (9) lie within the machine precision even for large step sizes. This indicates
that the nonstandard finite difference scheme is almost exact and is highly stable.
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(a) α = 0.25
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(b) α = 0.50
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(c) α = 0.75
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Fig. 3. Comparisons between the solution of the fractional logistic model using the HPM, NIM,
West and the proposed method for α = 0.25,0.5,0.75,1.0

In order to compare the solutions produced by the proposed approach with
West’s method, the homotopy perturbation method (HPM), and the new iterative
method (NIM), the solutions of Example 2 obtained by these methods are illustrated
in Figure 3. Figure 3 shows that each of the four methods yields bounded solu-
tions for Example 2 when considering a short time period and specific values of α.
However, the HPM and NIM lack horizontal asymptotes, resulting in solutions that
exceed the carrying capacity of the model for longer periods of time or high values of
α. However, it is apparent that both the two solution forms of West, and the suggested
solution are bounded, with the proposed form reaching the model’s carrying capacity
more rapidly than West’s solution. The two solutions of West and the proposed are
in complete accord for α = 1.0.
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5. Conclusions

This work investigated the solution of the fractional logistic model. In accordance
with West’s concept as presented in [14], a secondary solution formula for the logistic
model is provided. This formula replaces the exponential function with the Mittag-
-Leffler function in the solution of the first-order logistic model. Subsequently, it de-
rived two nonstandard finite difference methods to solve the fractional logistic model.
One approach utilized Mickens’s principles to develop a nonstandard finite difference
scheme, assuming that the analytical solution is unknown. The second approach is
based on the proposed analytical solution of the fractional logistic model. Interest-
ingly, the two nonstandard finite difference methods are identical.

The convergence of the nonstandard finite difference scheme is established by
demonstrating its consistency and stability. It has been proved that the proposed
numerical scheme is unconditionally stable.

This paper has three major contributions. The first is that it presents an alternate
solution formula for the fractional logistic model, derived from the solution form of
the classical logistic model. The second is that it provides an exact finite difference
scheme for solving the fractional logistic model. The proposed numerical method
exhibits unconditional stability and is capable of functioning with significantly large
step sizes while maintaining stability and dynamical consistency.

The performance of the proposed nonstandard finite difference scheme is illus-
trated using two numerical examples chosen from the literature.

Figures 1a-1f demonstrate that when the fractional order α is small, both West’s
and the proposed solutions of the fractional logistic model exhibit a very slow
approach towards reaching their carrying capacity. By raising the value of α, both
solutions converge to the carrying capacity more quickly. The proposed nonstandard
finite difference scheme converges to the carrying capacity faster than West’s solu-
tion. Similar behaviours are noticed in Figures 2a-2b and 3a-3d.

We can see from Figures 3a-3d that the proposed nonstandard finite difference
method and West’s solution work better than the HPM method, and the NIM methods.
The HPM and NIM solutions are not bounded by the carrying capacity of the frac-
tional logistic model, but the NSFDM and West’s solutions are.

Tables 1 and 2 demonstrate that the solutions obtained from the proposed non-
standard finite difference method (9) closely approximate the solution (2). In Table 1,
step sizes are taken in the range from h = 1 to h = 50. In Table 2, step sizes are taken
in the range from h = 0.5 to h = 15. The majority of the absolute errors obtained in
the two tables fall within the limits of machine precision, indicating that the proposed
NSFDM is almost exact.

Finally, the results obtained in the two examples agree with the theoretical results
stated in Section 5.
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