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Abstract. The fractional Riccati/Logistic differential equations (FRDE/FLDE) can be
accurately solved numerically by using the approach presented in this study. In the provided
questions, the fractional derivative is in the Caputo-Fabrizio (CF) sense. The suggested
approach is the successive approximation technique (SAM). In this technique, we approxi-
mate the solution of the FRDE and FLDE with a finite-dimensional problem. A particular
focus is examining the convergence analysis and estimating the upper bound on the error
of the obtained approximate scheme. We offer an outcome on worldwide convergence of
consecutive estimates. Also, to show the thoroughness of the method proposed, we computed
the residual error function. Illustrative instances are given to prove the usefulness and validity
of the suggested method.
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1. Introduction

The RDE was named for the Italian ”Jacopo Francesco Riccati” (1676-1744).
The basic theories of this equation are presented in Reid’s book [1], which also in-
cludes applications to diffusion problems, random processes, and others. Financial
mathematics is one of the more recent applications of engineering science,
in addition to significant and now traditional applications like network synthesis,
optimum control, resilient stabilization, and the stochastic realization theory. Clas-
sical numerical techniques like the Runge-Kutta and forward Euler methods can be
used to solve this equation. Dubois and Saidi [2] proposed an unconditionally stable
method. The nonlinear RDE is solved analytically using the Adomian decomposi-
tion method as demonstrated by Bahnasawi et al. [3]. Tan and Abbasbandy [4] used
the homotopy analysis approach as an analytical methodology to solve the quadratic
Riccati equation. Numerous authors have researched the FDRE, employing various
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numerical techniques. To tackle this problem, the variational iteration method is
applied, whereas the Adomian decomposition method is used in [5].

The LDE is obtained by solving the logistic equation with the fractional deriva-
tive operator. The model was originally published in 1838 by Pierre Verhulst [6, 7].
The population modeling has numerous variables [8]. The Verhulst’s model is often
used to demonstrate the chaotic behavior and periodic doubling of dynamical sys-
tems [7]. According to the model, some factors, such as population density, may be
able to restrict population growth [6, 8]. A common use for the logistic curve is in
medicine, where tumor growth is modeled using the LDE. This use can be viewed as
a continuation of the use described previously within ecology. The explanation for the
logistic equation’s solution is the population growth rate, which is constant and does
not take into account the availability of food or the spread of disease [6]. Let N(¢) be
the tumor’s size at time ¢ and up to the saturation limit, also known as the maximum

dN
carrying capacity [6], where o pN( ), the model’s solution curve increases

1——
exponentially. Where N, K, and p are the colgcentrations of the population, carrying
capacity, and maximum population growth rate, respectively. A constant growth rate
is represented as the solution of the LDE by the formula N(¢) = NoeP’, where Ny
represents the starting population [9].

Using a maximum principle, the author [10] demonstrated an abstract monotone
iterative system. Numerous publications have been written about the global conver-
gence of the SAM for nonlinear functional differential equations. Using the conver-
gence of consecutive approximations, Browder [11] provided a concise and clear
demonstration in 1968 of an expansion on the traditional Picard-Banach contrac-
tion theorem [12]. Abbas et al. have recently started the worldwide convergence of
consecutive approximations [13, 14]. Several findings on worldwide convergence of
sequential approximations for semi-linear differential equations in abstraction can be
found in [13], while [14] discusses other findings regarding the Darboux problem for
the implicit PDE with successive approximations.

Over the past thirty years, many authors have remained interested in fractional
calculus [15]. Researchers have discovered that the creation of innovative fractional
derivatives with distinct singular or non-singular kernels is crucial to address the
demand for modeling real-world problems in a range of domains, including biology,
engineering, and mechanics [16-21]. The CF operator recently proposed a unique
operator in the classic Caputo derivative by replacing the singular kernel with the reg-
ular kernel [22]. Also, this operator uses a non-singular kernel called the exponential
kernel. It can express the memory’s whole effect [23]. Numerous issues, including
the fractional glioblastoma multiform [24] and the space-time-fractional diffusion
equation [25], have seen the effective use of this novel operator.

The primary goal of the research under presentation is to apply the SAM to
achieve the numerical solution of the FRED and FLDE, extending earlier work on
fractional differential equations. We also give an analysis of the suggested numerical
scheme’s convergence.
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2. Preliminaries

The notation C := C(Y,R) will be used for the family of continuous functions
on the interval Y = [0, 7], which contains all real-valued functions. Let y : ¥ — R,
associated by the norm [26]:

W (@)]]e = sup [y (2)]. (1)
teY

L' (Y) is the space of all integrable Lebesgue and real-valued measurable functions
v, furnished with the norm [26]:

IOl = [ v @

We shall now present the fractional calculus results.
Definition 1 [23] The CF fractional integral CFIY of order 0 < v < 1 of a function
g(t) € L'(Y) is formulated as:

rgle) = ()1 = V)gl) +ve) [ gl 3

where /(v) = ,and M(Vv) is a normalization constant.

2
M(V)(2—V)
Definition 2 [23] The CF fractional derivative ¥ D" of order 0 < v < 1 of a function
g(t) € C(Y) is formulated as:

/(v t —v(t—1)

FpVg(r) = v) / g(t)e v dt, te. 4)
(1—v) Jo

For a constant function g, we can see that " DVg(z) = 0.

Definition 3 [27] The modified CF fractional derivative ¥ DY of order v of a func-

tion g(¢) € C(Y) is formulated as:

1 d t —V(I—T
MCEDYg(t) = (1\})6”/0 (1) —g(0)]e 5 dr, O<v<l. (5

In this definition, for a constant C, we can see that MCFpve = 0, also as in the original
CF fractional-order derivative and the kernel does not have a singularity at t = 7.
The MCEF fractional-order derivative satisfies the limit conditions [27]:

lim " DYe(1) = ¢'(r), lim "' DYg(1) = g(t) — 4(0). (6)

v—1 v—0
Remark The authors in [30] proved the following formula:
CFIVCEDYg(r) =g(t) —c, (7

with an arbitrary real constant ¢ = g(0).
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Lemma 1 [28] Let p(¢) € L'([0,T]). Then the following IVP:

ID"w(r)=p(r),  w(0) =y, 1€[0,7T], (®)

holds the following unique solution:

y(t) = o+ (1=v)iv)(p(t) = p(0)) +VE(V) /Ot p(t)dr. ©)

3. Basic concepts of the successive approximation method

To show how we can implement the successive approximation method and
construct its corresponding numerical scheme, we begin with a general form of
the CF fractional IVP:

IDVy(1) = ft, w(1)), O<v<l, t>0, (10)

with an initial condition y(0) = yp € R.

Set Y, := [0, T], for any € € [0, 1]. We are going to state some hypotheses.

(H;) The function f : Y x R — R is continuous.

(Hz) 3 a constant ¥ > 0 and a continuous and nondecreasing function 4 : Y x [0, 7] —
R* and satisfies the following criterion [26]:

fw) =W <h@|ly—w]), €Y, yyeR:|ly—y<y. 1D
(H3) Let R = 0 be a function that belongs to C (Y, [0,7]) and satisfies the criterion:
ot
R(t) < L(v) [2(1 —v) sup |f(t,¢)|+V h(r,R(r))dT] , €<d8<1.
(l‘,l]/) GTE X [0,')/] 0
(12)

In light of the previous conditions, notes, and Lemma 1, we can define the SA scheme
of the model (10) as follows [26]:

¥(1) = Yo,
Vot (1) = W0+ 09) [(1=9) (700~ F 0.0 +v [ (wn(eae].

n=0,1,....
(13)

Theorem 1. Suppose the concepts H;, i = 1,2,3 hold. Then the sequence of SAs
y,(t), n = 0,1,... which is given in (13); is a uniform convergence to the unique
solution of IVP (10) on its domain.
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PROOF The proof of this theorem can be found in [26]. m

4. Numerical implementation

Now, we are going to implement the concepts of the SAM discussed in the
previous section to solve numerically each of the FRDE and FLDE.

4.1. Implementation SAM on FRDE

We examine the following form of the FRDE [29]:
IDVy()=1-y*(@), w(0)=0, ve(0,1). (14)

For v = 1, Eq. (14) reduces to the standard RDE ys(r) = 1 — y?(¢) which has the
exact solution:

vt = (¥ — 1) +1) .

To study the existence and uniqueness of the FRDE (14), through the following
theorem, we take Q = [0, 7] and define the space C(Q2) as the class of all continuous
functions defined on Q, with the norm:

[l ZSHg\e’“W(t)% €>0, (15)
te

which is equivalent to the sup-norm ||y|| = sup |y(7)].
=)
Also, we define the space:

B={yeLl0.T], [wll=lle"w{®)lL} (16)

Theorem 2 Suppose that the function y(¢) is bounded, i.e., |y| < k, for some con-
stant k, also W(¢) € C(Q), y'(t) € B. Then the initial value problem (14) has a unique
solution y/(t).

PROOF With the help of the properties of fractional calculus (7) [30] and operating
with 71V, we can rewrite (14) as follows:

w(t) = c+ I (1—y2(0)), (17)

with an arbitrary real constant ¢ = y(0). Now, we need to define the operator A :
C(Q) — C(Q) as follows:

Ay(t) = FI'[1 — w2 ()] +c, (18)
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then
e Ay —Ayn) = e I [(1—yi (1) — (1 - w3 (1))]

't —5 v—1
S/() Ol_‘(‘)/)e_&'(l—s)(lljl(s)—W2(s))(wl(s)+l,/z(s))e—%:sds

v Es
N

t gV=leo—
< — d
<llvi—vall || “pyds

19)

therefore, we obtain [|[Ay; — Aya|| < |[y1 — ya||, and this tends to that the operator
A has a unique fixed point. Consequently, the integral Eq. (17) has a unique solution
v € C(Q). In addition, it is easy to deduce that ¥ 1V (1 — y?(1))|,—o = 0, by connect-
ing the formulas (3) and (14).

The last step in the proof is to prove the equivalence between the integral equation
(17) and the initial value problem (14) as follows:

d
From Eq. (17) and use <1V = CFIVIE, we can formally have:

vin) = [e+ I 02w (1),

W [rravw ).

ey (1) = e ¢ {CFIV(—ZIV(I)\/II(Z))} 7

from which we can conclude that y € C(Q) and ¥’ € B. Now, from Eq. (17), we get

dy d cp, 2
&Y _Scrpp
a [1—w=()],

_ dl[/ v d d
CF yl—v CF yl—v CF yv 2 CF y1-vCFyv 2
1 — = 1 — I — t)=—""1 I'[1— t

“DVy(r) = %I [1—y?(0)] = 1= y*(r), and y(0) =0,

this means that the integral equation (17) is equivalent to the IVP (14), and the
theorem is proved. ]

According to the successive approximation (13), we can construct a numerical
scheme of the problem (14) in the interval Y = [0,2.5] as follows:
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Y(t) =0, teX,

2 t
it ()= ——=—— ) (1= v) (F(z, yu(t)) — F(0,0 F(z,y,(7))dt]|.
i) = (= ) |-V E () - F0.0)+v [ Fen(e)ar]
(20)
This SA form is convergent uniformly on its domain according to Theorem 1 to the
unique solution of (14). Here F (1, y(r)) = 1 — y2(¢).

Here, to present a complete numerical study with simulation, we consider and
define the residual error function (REF) [31] as follows:

REF(t,v,n) = "Dy, (1) + w2 (1) — 1. 1)
Table 1. A comparison of the REF from solving the FRDE at various values
ofnatv=0.9
t n=10 n=15 n=20 n=25 n=30

0.0 4.6542E-3 | 1.0074E-4 | 9.9514E-5 | 2.6540E-6 | 3.7530E-7
0.5 4.7520E-3 | 5.0147E-4 | 6.9520E-5 | 7.7589E-5 | 0.3021E-6
1.0 1.4452E-2 | 3.7530E-3 | 0.8501E-5 | 9.5421E-6 | 2.9328E-7
1.5 3.1597E-2 | 4.4568E-3 | 8.7419E-4 | 3.1204E-6 | 4.9317E-7
2.0 1.6541E-3 | 3.0147E-4 | 4.7204E-5 | 5.6514E-5 | 0.9017E-6
2.5 1.0258E-2 | 0.2580E-3 | 6.7536E-4 | 4.5621E-6 | 3.9755E-7

In all cases, the smallness of the residual (REF(z,v,n) — 0) means that the
approximate solution is close to the exact solution, i.e., the absolute relative error
tends to be zero. We used this type of error because the exact solution is unknown
in the case of v, which is a fractional value. Finally, to achieve this aim and vali-
date our numerical solutions, we compute the REF with different values of #,t, at
v = 0.9 through Table 1. The results included in this table show the thoroughness of
the method proposed in this article, and that the error can be controlled and reduced
with increasing n.

Figures 1 through 3 display the numerical results of the model (14) in the interval
[0,2.5], with varying initial solutions { and fractional order v values; also, the num-

is what we use.

ber of iterations n of the numerical scheme (20) varies. M(v) = 5

1. Figure 1 shows a comparison between the exact solution (v = 1) and numerical
solution (with n = 15) utilizing the previously introduced technique.

2. Figure 2 examines the behavior of the numerical solution with { = 0.0
and n = 20, using various values of v = (0.95, 0.85, 0.75, 0.65.

3. Figure 3 gives the behavior of the numerical solution with various initial
solutions y =0.2,0.4, 0.6,0.8, at v =10.9 and n = 25.

These figures allow us to conclude that the approach can be used to solve the given
problem because the behavior of the obtained numerical solution is in excellent
agreement with the exact solution.
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Fig. 1. A comparison between the exact solution and numerical solution
of the FRDE using SAM at v =1
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Fig. 2. The numerical solution of the FRDE with different values of v at { = 0.0
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Fig. 3. The numerical solution of the FRDE with different initial solutions ¥ at v = 0.9
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4.2. Implementation of SAM on FLDE

In this example, we consider the following FLDE [32]:
“DVO(r)=BO()(1-6(), 6(0)=6, B>0. (22)

For v = 1, Eq. (22) reduces to the standard LDE 0(¢) = $6(t)(1 — 6(t)), with the
. . o\ -1

exact solution 6(r) = 6 ((1 —6)e P4 9) .

The existence and uniqueness of (22) can be found in detail [32].

According to the successive approximation (13), we can construct a numerical
scheme of the model (22) in Y = [0, 1] as follows:

Bo(1)=6, te,

Ouir (1) = O+ <(2_Vz)M(v)) {(1 V) (G (1, 61)) — G(0,8)) + v /OtG(T,O,,(T))dT} .
(23)
Here G (1,0(t)) = BO(r)(1 —0(¢)).

To present a complete numerical study with simulation, we consider the REF
as follows:

REF(t,v,n) = “C'DY6,(t) — B 6,(2)(1 — 6,(t)). (24)

To achieve this aim and validate our numerical solutions, we compute the REF with
different values of n,t, at v = 0.9 through Table 2. The results included in this table
show the thoroughness of the method proposed in this article, and that the error can
be controlled and reduced with increasing n.

Table 2. A comparison of the REF from solving the FLDE at various values
ofnatv=20.9

t n=10 n=15 n=20 n=25 n=230

0.0 2.5387E-2 | 3.3201E-3 | 2.6214E-4 | 0.0147E-5 | 7.9217E-7
0.2 6.7536E-2 | 1.4521E-3 | 0.3214E-4 | 4.0159E-5 | 6.7536E-6
0.4 6.7536E-2 | 2.9521E-3 | 4.4521E-4 | 2.7410E-5 | 0.9632E-7
0.6 1.9214E-2 | 4.6541E-3 | 3.7530E-4 | 2.0214E-5 | 7.3201E-7
0.8 5.7536E-2 | 1.1230E-3 | 6.7504E-4 | 3.0054E-5 1.9541E-7
1.0 1.3258E-2 | 3.7521E-3 | 4.4520E-4 | 7.7524E-5 | 2.6627E-6

The numerical results of the given model (22) in the interval [0, 1] are given in
Figures 4 to 6 with various values of the fractional order v, and initial solutions
0: with difzferent numbers of iterations n of the numerical scheme (23). We take
M(v)= v
1. Figure 4 gives a comparison between the exact solution v = 1, and the numer-

ical solution at § = 0.25, n = 15 using the proposed numerical scheme.
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2. Figure 5 presents the numerical solution with different values of v =0.95, 0.85,
0.75,0.65 at § = 0.25 and n = 20.

3. Figure 6 shows the effect of the parameter 3 on the behavior of the numerical
solution with different values of B = 0.3,0.6,0.9,1.2 at v = 0.9, 6 = 0.1,
and n = 25.

These figures allow us to conclude that the approach can be used to solve the
given problem because the behavior of the obtained numerical solution is in excel-
lent agreement with the exact solution. In addition, the obtained numerical solutions
depend on the changes in the values of parameters v, n, 6, and B.

034 ExactRed
0.32¢ SAM: Black
£ 030/
0.28}
0.26}
0.0 0.2 0.4 0.6 0.8 1.0

t

Fig. 4. A comparison between the exact solution and numerical solution
of the FLDE using SAM at v =1
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O
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0.0 0.2 0.4 0.6 0.8 1.0

t

Fig. 5. The numerical solution of the FLDE with different values of v at 6 = 0.25
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Fig. 6. The approximate solution of the FLDE with different values of 3

5. Conclusions

The goal of this research is to apply the successive approximation method to
the numerical investigation of two popular models: the FRDE and FLDE. We offer
a numerical simulation of the two suggested problems, with varying initial solutions
and fractional order values v; we also vary the number of iterations n of the proposed
numerical schemes. Also, in each of the two proposed models, we compared the
obtained numerical solutions and the exact solution at v = 1. This comparison allows
us to conclude that the numerical solution achieved by applying the suggested scheme
is in excellent agreement with the exact solution. It also demonstrates the effective-
ness of this approach in solving the problems and highlights the validity and enor-
mous potential of the offered strategy. Furthermore, the derived scheme’s error upper
bound is inferred. The sequence of the obtained numerical solution converges as the
number of iterations, n, increases, according to the numerical results. This paper was
computed entirely in Mathematica 8.0. Finally, it is vital to look into analytical and
numerical solutions for FDEs because they have recently become models in various
areas of applied mathematics.
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