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Abstract. Slovakia currently has a relatively large unused potential in the area of electricity 
production from solar radiation and wind as renewable sources. The conversion of the wind’s 
mechanical energy into electrical energy depends, among other things, on the wind speed and 
its turbulence. Perhaps the most widely used probability distribution for a wind speed model 
is the Weibull distribution. In the article, we deal with the comparison of seven methods  
for estimating the parameters of this distribution – maximum likelihood method, method of 
moments, empirical method, empirical method of Lysen, power density method, least squares 
method and weighted least squares method – on wind speed records from the city of Nitra 
for the period of 2005-2021. The vicinity of this city is one of the places identified as a suit-
able location for the installation of wind turbines. The performance of individual estimation 
methods is evaluated based on the indicators – the coefficient of determination R2 and the root 
mean square error RMSE. Based on these values, the most accurate method is the weighted 
least squares method, although all other methods achieved similarly good results. 
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1. Introduction  

The electricity generated from wind, alongside other renewable energy sources, 
represents clean, available and secure energy. With the European target of producing 
at least 42.5 % of the produced energy from renewable sources, it is necessary  
to increase the installed wind capacity from 204 GW in 2022 to more than 500 GW 
in 2030 [1]. The total installed capacity in Europe built in 2023 reached 18.3 GW 
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with 79 % of it being produced onshore. Among the members of the European Union, 
the leader in wind energy production is Denmark, with a 56 % share of it in the power 
mix of the country. Right on the opposite side are Slovakia and Slovenia, where the 
share of wind power is close to zero in their energy mixes. [2] In Slovakia, there are 
currently two small wind farms, located in the south-west of the country, with a total 
installed capacity of 3 MW/year. However, there are another seventeen wind farms 
under the process of approval that may bring another capacity of 750 MW in the 
future. All the planned wind farms are situated in the western and south-western 
regions, with two of them in the vicinity of the city of Nitra. Therefore, the wind 
conditions in this city have been chosen as an object of the study.  

The growing share of electricity production from solar and wind sources increases 
the stochastic nature of the power system. The wind speed is one of the most  
important parameters to model wind energy, as it determines how much of the wind 
energy is converted into electric power at the rotor of the wind turbine. The random 
character of the wind speed requires the study of the speed distribution to determine 
the wind energy capacity of the site. For this purpose, the most commonly used  
probability distribution is the two-parameter Weibull distribution. Since the Weibull 
distribution parameters play a significant role in the wind speed applications, it is  
a necessity to find the most suitable method for their estimation. The applicability 
and the accuracy of the method might vary with the sample size, sample data distri-
bution, sample data format and the goodness of fit test [3]. The authors in [4] com-
pared seven parameter estimation methods (the graphical method, the method of  
moments, standard deviation method, maximum likelihood method, power density 
method, modified maximum likelihood method, the equivalent energy method) when 
fitting the Weibull distribution to the 10-min time series wind speed measured at two 
different heights (20 m and 30 m) in three sites in Bangladesh. Based on their per-
formance, the method of moments ranked as the best, with the maximum likelihood 
method being the second best and the power density method the third best. Gungor 
et al. in [5] investigated the appropriateness of four methods (the least square method, 
the standard deviation method, the maximum likelihood method, and the energy pat-
tern factor method) finding out that the least square method is clearly outperformed 
by the other three methods when applied to the wind speed data from Izmir-Aliağa, 
Türkiye. Wind speed data from four stations in Alberta, Canada were examined  
in [6] to find the best estimation method for finding the parameters of the Weibull 
distribution. Whilst the empirical method of Justus, the empirical method of Lysen, 
the energy pattern factor method and the maximum likelihood method provided a very 
favourable efficiency, the graphical method achieved poor results. In [7], authors 
compared the analytical methods (the maximum likelihood method, the moment 
method, the energy pattern factor method, and the empirical method) to the heuristic 
optimization algorithms (particle swarm, crow search, aquila optimizer, bald eagle 
search optimizer) to identify the most suitable estimation method for the parameters 
of the Weibull distribution applied to wind speed data from Egypt.  

In this study, we have chosen seven methods for Weibull parameter estimation – 
the method of moments (MOM), the empirical method (EM), the empirical method 
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of Lysen (EML), the power density method (PDM), the maximum likelihood method 
(MLM), the least squares method (LMS) and the weighted least squares method 
(WLMS). Their efficiency is tested based on the fit of the distribution to the wind 
speed data from the city of Nitra, south-western Slovakia, divided into groups rep-
resenting the seasons of the year. The performance of each method is assessed by the 
coefficient of determination �� and the root mean square error RMSE.  

2. Parameter estimation of Weibull probability distribution  

The cumulative distribution function (CDF) of the Weibull probability distribu-
tion is defined as 

 ���� = 1 − exp − ��
���� ; (1) 

the probability density function (PDF), as the derivative of (1), is then 

 ���� = �
�� ���� exp − ��

���� . (2) 

Both (1) and (2) are defined for � > 0, � > 0 and � > 0. Variable � represents the 
wind speed, � is a dimensionless shape parameter and � is a scale parameter in units 
of the wind speed. The scale parameter � is proportional to the mean wind speed. 
Further, the mean ���� and the variance  ��� of this distribution are given  
as follows 

 ���� = �Γ �1 + �
��, (3) 

  ��� = �� Γ �1 + �
�� − Γ� �1 + �

���, (4) 

respectively. Here Γ�$� denotes the gamma function 

 Γ�$� = % �&��'��(�)
* ,   $ > 0. (5) 

For the majority of the wind regimes all over the world, the shape parameter � 
ranges from 1.5 to 3 [8]. Higher value of the shape parameter implies more stability 
in the wind speed, whereas the higher value of the scale parameter � implies higher 
wind speed. 

2.1. The parameter estimation methods 

Several methods have been created for estimation of the Weibull probability  
distribution parameters � and �. The estimates of the parameters � and � will be 
denoted by �, and �̂, respectively, further in the text. 
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Let ��, ��, … , �/ be a random sample of size 0 from the Weibull distribution  
with the parameters � and �. Let ��, ��, … , �/ be a realization of the random sample. 
Let ���� < ���� < ⋯ < ��/� be the ordered statistics of ��, ��, … , �/ and let 
����, ����, … , ��/� be ordered observations.   

In the method of moments, the estimates of the parameters are obtained by  
equating the first and the second moment of the Weibull distribution to the first  
and second sample moments, respectively, as follows 

 �Γ �1 + �
�� = �̅, (6) 

 ��Γ �1 + �
�� = �

/ ∑ �5�/56� . (7) 

Here, 

 �̅ = �
/ ∑ �5/56�  (8) 

is the sample mean wind speed. Dividing equation (7) with the squared equation (6) 
leads to equation  

    
7��89

��
79��8:

�� = :
; ∑ �<9;<=:

��>>>�9 . (9) 

The estimate �, of the shape parameter is found as a solution of (9) numerically  
by the Newton-Raphson method in an iterative process. The estimate �̂ of the scale 
parameter is then found as a solution of (6). 

The empirical method is a special case of the method of moments where the  
estimation of the shape parameter is calculated from the equation 

 �, = � �̅
?@��.*AB

 (10) 

where  

  C� = D �
/�� ∑ ��5 − �̅��/56�  (11) 

is the sample standard deviation. The estimate �̂ is found in the same way as in the 
method of moments by the equation (6). 

In the empirical method suggested by Lysen in [9], the estimate of the shape  
parameter �, is found by the same equation (10) as it is in the empirical method, 
whereas the scale parameter is estimated by 

 �̂ = �̅ �0.568 + *.HII
� ��:

�. (12) 
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The energy pattern factor is defined as the ratio of the mean of the cube of  
the wind speed to the cube of the mean of the wind speed [3] 

 �JK = ��L�>>>>>>
��̅�L = :

; ∑ �<L;<=:
�:

;  ∑ �<;<=: �L. (13) 

The energy pattern method employs �JK to obtain the estimate of the shape  
parameter as 

 �, = 1 + I.BM
NOPQR9. (14) 

The estimate of the scale parameter �̂ is calculated from the equation (6). 
The maximum likelihood method is based on the maximization of the likelihood 

function S���, ��, … , �/; T� or its logarithm ln S���, ��, … , �/; T� where T ∈ Θ is the 
unknown parameter (in general, it is a vector parameter) and ��, ��, … , �/ is a reali-
zation of the random sample ��, ��, … , �/ of size 0 from the distribution with PDF ���, T�. For the Weibull probability distribution, the log-likelihood function is of  
the form 

 ln S���, … , �/; �, �� = 0 ln �
�� − �

�� ∑ �5�/56� + �� − 1� ∑ ln �5/56� . (15) 

After one sets the derivative of (15) with respect to � and � equal to zero, the fol-
lowing equations for the estimates of the parameters are found 

 
�
Y − ∑ �<�;<=: Z[ �<

∑ �<�;<=: 
+ �

/ ∑ ln �5/56� = 0,  (16) 

 � = ��
/ ∑ �5�/56� �

:
�. (17) 

The estimate �, is found as a solution of (16), calculated numerically by the Newton- 
-Raphson method in an iterative process. Once the estimate �, is known, the estimate �̂ is calculated from (17). 
In the least square method, one uses the linearization of the CDF (1) of the form 

 lnN− lnN1 − ����RR = � ln � − � ln �. (18) 

Substituting lnN− \0N1 − ����RR = ], ln � = �, −� ln � = $, � = ^, the equation 
(18) can be written in a simpler form 

 ] = ^� + $. (19) 
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The estimates of the parameters � and � are found as solutions of (19) applying  
the least squares method. The estimates are given as 

 �, = / ∑ Z[N��<�R Z[�� Z[���_,N��<�R� �;<=: �∑ Z[N��<�R;<=: ∑ Z[�� Z[���_,N��<�R��;<=:
/ ∑ Z[9 ��<�;<=: �N∑ Z[ ��<�;<=: R9 , (20) 

 �̂ = exp `− ∑ Z[�� Z[���_,N��<�R��;<=: ��, ∑ Z[N��<�R;<=:
/ �, a. (21) 

As we may see in equations (20), (21), the unknown values of the CDF (1) from (18) 
are replaced with the estimate in the form of the mean rank [10]  

  �,N��5�R = 5
/8� (22) 

where b denotes the b-th smallest value of the ordered observations ����, ����, … , ��/�. 
In the weighted least squares method, as a modification of the least squares 

method, the estimates of the regression parameters $ and ^ from equation (19)  
minimize the function  

 c�$, ^� = ∑ d5N]5 − $ − ^ lnN��5�RR�/56�  (23) 

where the weights d5, b = 1,2, … , 0, are defined as [11] 

  d5 = �1 − �,N��5�R� ln �1 − �,N��5�R��� , b = 1, 2, … , 0. (24) 

Here again, ����, ����, … , ��/� denote the ordered observations and �,N��5�R is defined 

by (22). Then, the estimates �, and �̂ of the Weibull probability distribution parame-
ters are obtained as solutions of the equations 

 �, = ∑ f<;<=: ∑ f< Z[N��<�R Z[�� Z[���_,N��<�R� �;<=: �∑ f< Z[N��<�R;<=: ∑ f< Z[�� Z[���_,N��<�R��;<=:
∑ f<;<=: ∑ f< Z[9 ��<�;<=: �N∑ f< Z[ ��<�;<=: R9 , 

  (25) 

 �̂ = exp `− ∑ f< Z[�� Z[���_,N��<�R��;<=: ��, ∑ f< Z[N��<�R;<=:
�, ∑ f<;<=: a. (26) 

3. Data description  

The wind speed data, analysed in the paper, were recorded at the Nitra – Veľké 
Janíkovce meteorological station (indicator 11968), GPS latitude 48°16''50' [48.28056], 
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GPS longitude 18°08''08' [18.13556], the height of 132 meters above sea level.  
The station is located on the outskirts of the city of Nitra, within the grounds of  
a small airport. It is surrounded by fields; the general face of the surroundings is 
partially sheltered. The coordinates refer to a measuring plot that has the standard 
dimensions required by internal regulations, i.e. 20 m × 20 m. The mast for wind 
measurement is within the measuring plot; at the airport in Nitra, it is located on  
the roof of the building. The standard height for measuring wind direction and speed 
at monitoring stations is 10 m above the ground. To measure wind characteristics, 
Vaisala automatic instruments and GILL ultrasonic instruments are currently being 
used. The anemometers have a 2-year calibration interval. 

The data were collected from the meteorological reports within the time frame of 
January 2005 to December 2021 included. The data were recorded at hourly inter-
vals. Before the pre-processing, the set counts for 149,016 records; after the errors, 
the missing data and zero wind speeds were removed, the set contains 143,879 data 
points (the percentage of data removed was 3.46 %). The data were further split into 
four datasets corresponding to seasons of the year – spring (March, April, May), 
summer (June, July, August), autumn (September, October, November) and winter 
(December, January, February). The sizes of respective datasets: spring – 36,960, 
summer – 36,341, autumn – 34,374, winter – 36,204.  

Table 1. The descriptive statistics of the seasonal datasets 

 Mean Standard deviation Minimum Maximum Skewness Kurtosis 

Spring 4.145 2.885 0.100 19.900 0.854 3.332 

Summer 3.360 2.384 0.100 17.100 0.991 3.686 

Autumn 3.696 2.769 0.100 21.000 0.876 3.175 

Winter 4.065 3.043 0.100 18.900 0.885 3.215 

 Lower quantile Median Upper quantile Coefficient of variation [%] 

Spring 1.800 3.500 6.000 69.59 

Summer 1.500 2.800 4.800 70.95 

Autumn 1.400 2.900 5.600 74.93 

Winter 1.500 3.300 6.100 74.85 

 
According to Table 1, the highest mean wind speed was observed in spring with 

value of 4.145 m/s. The lowest mean wind speed was observed in summer with value 
of 3.360 m/s. The coefficient of variation ranges from 69.59 % to 74.93 %, which 
indicates a very high variability of the wind speed in this location. The coefficient  
of kurtosis ranges from 3.175 to 3.686 therefore, the distribution can be regarded  
as highly leptokurtic distribution. The coefficient of skewness ranges from 0.854  
to 0.991, which indicates a highly right skewed distribution. 
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4. Results 

The parameters of the Weibull distribution were estimated applying all seven 

methods. The initial value for the Newton-Raphson method was the estimate �� that 

was obtained using the least squares method. To assess the goodness of fit of the 

methods, two indicators were calculated. The coefficient of determination (��) and 

the root mean square error (RMSE) were considered to decide on the best fitting 

model. The RMSE determines the accuracy of model by calculating the average of 

the square difference between the observed and the predicted probabilities of the 

theoretical distribution. The �� is used to measure the linear relationship between 

the observed and the predicted probabilities of the theoretical distribution. The RMSE 

and ��
 are calculated by 

 ���� = 
�
� ∑ ������� − ���������

��� �
�
�, (27) 

 �� = ∑ ��������� !�"
�#�

∑ ��������� !�$∑ ��"�����������!�"
�#�

"
�#� 

  (28) 

where �� is the estimated cumulative distribution function, � = �
�  ∑ �������

���  is its 

mean. The closer the value of �� is to 1, the better the fit. Similarly, the closer the 

value of RMSE is to 0, the better the fit. 

4.1. Spring dataset 

As can be seen in Table 2, the best fit is obtained by the weighted least squares 

method with �� = 0.9972 and ���� = 0.0149. The second best is the maximum 

likelihood method, followed by the method of moments and both empirical methods. 

The worst fit is achieved when the parameters are estimated by the power density 

method. The coefficient of determination �� ranges from 0.9948 to 0.9972, which 

means that all the methods fit the data very well.  

Table 2. The estimates of the Weibull probability distribution parameters  

and the goodness of fit criteria for the spring dataset 

 MOM EM EML PDM MLM LSM WLSM 

�� 1.4605 1.4825 1.4825 1.4913 1.4505 1.4719 1.3231 

%̂ 4.5762 4.5852 4.5889 4.5886 4.5748 4.5382 4.6410 

�� 0.9951 0.9951 0.9951 0.9948 0.9960 0.9948 0.9972 

���� 0.0197 0.0213 0.211 0.220 0.0190 0.0218 0.0149 
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4.2. Summer dataset 

For the summer dataset (Table 3), the best fit is achieved by the method of mo-

ments, closely followed by the maximum likelihood method and the power density 

method. The worst fit is obtained by the least squares method with �� = 0.9953 and 

���� = 0.0207. Here, the weighed least squares method achieved the second worst 

values of the goodness of fit indicators; however, the difference between the method 

of moments, as the best one, and the weight least squares method is 0.0005 (��) and 

0.0008 �����).  

Table 3. The estimates of the Weibull probability distribution parameters 

and the goodness of fit criteria for the summer dataset 

 MOM EM EML PDM MLM LSM WLSM 

�	 1.4303 1.4517 1.4517 1.4499 1.4418 1.5011 1.3378 


̂ 3.6982 3.7060 3.7089 3.7053 3.7094 3.6681 3.6993 

�� 0.9974 0.9970 0.9970 0.9971 0.9972 0.9953 0.9969 

���� 0.0151 0.0162 0.0162 0.0161 0.0155 0.0207 0.0159 

4.3. Autumn dataset 

Similarly as for the spring dataset, the autumn dataset is fitted the best by the 

weighted least squares method with �� = 0.9948 and ���� = 0.0203 (Table 4).  

The second best is the maximum likelihood method, followed by the method of  

moments. The worst fit is achieved by the power density method. The coefficient  

of determination �� ranges from 0.9900 to 0.9948, which means that all the methods 

fit the data very well. The difference between the best one and the worst one is 0.0048 

(��) and 0.0107 (����).  

Table 4. The estimates of the Weibull probability distribution parameters 

and the goodness of fit criteria for the autumn dataset 

 MOM EM EML PDM MLM LSM WLSM 

�	 1.3489 1.3681 1.3681 1.3960 1.3298 1.3574 1.1751 


̂ 4.0297 4.0396 4.0426 4.0530 4.0219 3.9790 4.0822 

�� 0.9925 0.9916 0.9916 0.9900 0.9933 0.9916 0.9948 

���� 0.0264 0.0282 0.0282 0.0310 0.0248 0.0282 0.0203 

4.4. Winter dataset 

Also, the winter dataset is fitted the best by the weighted least squares method 

with �� = 0.9966 and ���� = 0.0166 (Table 5). The second best is the maximum  
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likelihood method, followed by the method of moments. The worst fit is achieved 
by the power density method. The coefficient of determination �� ranges from 
0.9918 to 0.9966, which means that all the methods fit the data very well.  

Table 5. The estimates of the Weibull probability distribution parameters 
and the goodness of fit criteria for the winter dataset 

 MOM EM EML PDM MLM LSM WLSM 

�� 1.3504 1.3697 1.3697 1.3962 1.3270 1.3451 1.1899 

�̂ 4.4332 4.4441 4.4474 4.4581 4.4202 4.3789 4.4964 

�
� 0.9940 0.9932 0.9932 0.9918 0.9949 0.9937 0.9966 

���	 0.0235 0.0253 0.0253 0.0280 0.0216 0.0243 0.0166 

5. Conclusion 

In the paper, the wind speed data from Nitra-Veľké Janíkovce were fitted by  
the two-parameter Weibull distribution, with seven methods used for the estimation 
of the probability distribution parameters. The coefficient of determination and the 
root mean square error were used to evaluate the performance of the considered 
methods. All seven methods performed well and are applicable for estimating  
the Weibull distribution parameters for all seasons, as indicated by high values of  
R

2 and low values of RMSE. In three seasons out of four (spring, autumn, winter), 
the weighed least squares method achieved the best results. The maximum likelihood 
method ranked as the second one, and the third one was the method of moments.  
On the other hand, the power density method had the worst fit; however, the value 
of R2

 exceeded 0.99 in all cases. In summer, the method of moment performed as  
the best one, the maximum likelihood method as the second best and, as opposed to 
the rest of the seasons, the power density distribution achieved the third best result. 
Further, we can conclude that the weighted least squares method performed better 
than the least squares method, which implies that the weight factor influences the 
performance of the parameter estimation. To sum it up, the weight least squares 
method provided the best fit in most of the modelled datasets. Furthermore, this 
method has several advantages – it is computationally simple, and the parameters of 
Weibull distribution can be estimated with closed formulas. 
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