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Abstract. In this work, a higher-order nonstandard implicit compact finite difference techni-
que is used to study a two-dimensional nonlinear distributed order Cable problem. The dis-
tributed fractional order is defined in the Atangana-Baleanu sense. The key advantage of
this strategy is the large stability areas it implicitly has. A particular focus is on examining
the stability analysis of the proposed scheme through the application of the Jon Von
Neumann approach. We show the effectiveness of the numerical scheme using two numerical
examples, and we compare our results with the published literature to check the accuracy of
the approach we have presented. The technique is a helpful tool for modeling this model,
as demonstrated by the results.
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1. Introduction

Distributed-order fractional derivatives indicate fractional integrated over the
order of the differentiation within a given range. The concept of distributed order
fractional derivative is expanded by Bagley and Torvik in [1]. There are a lot of
researchers who have taken this concept and applied it to some fields [2].

Derivatives of fractional order have numerous definitions. The Caputo, Griinwald-
-Letinkov, and Riemann-Liouville formulas are the most popular [3]. In recent years,
other authors have proposed new definitions of the fractional order derivative.
Recently, there are many studies to address several problems related to the local-
ization of the kernel [4] and the singularity of the kernel operators [2].

Atangana and Baleanu introduced a novel fractional order derivative [4] in 2016.
It is based on the generalised Mittag-Leffler function as a non-local and nonsingular
kernel. The recently developed Atangana-Beleanu derivative [4] has been used to
mimic a variety of actual world issues in many fields, as can be seen in [5].
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The Cable equation is important for modeling brain dynamics and many other
electrophysiology-related fields. Many articles, for example [6-8], have looked into
this fundamental biological model. All of the above research publications, on the
other hand, focused on the one-dimensional fractional Cable equation. Furthermore,
only a few academics have examined the 2D fractional Cable equation [5]. However,
it has been demonstrated that, due to the absence of long time memory effects, frac-
tional equations may not be suitable for depicting the diffusion processes in multi-
fractal media. This influences diffusion processes need more than fractional time
scales, which is important to do in-depth study on the subject of longer memory,
that’s why numerous scientists have introduced distributed-order fractional partial
differential equations [9].

In the compact technique, the ideal trigonal structure is maintained while approx-
imating second-order derivatives [10-14].

In the modeling and simulation of many real problems it is critical that numerical
approaches preserve the positivity of the solutions [11]. It is critical to avoid exagger-
ated negative values for the solution while constructing positivity-preserving meth-
ods ( [12]). The nonstandard finite difference (NSFD) schemes are developed [13]
by Mickens and has been applied in many areas of science including biological and
epidemic models [15]. A fundamental physical aspect of NSFD techniques is the
preservation of the steady-state convergence of the solution [12].

The motivation and the fundamental accomplishment of this study is the creation
of a precise numerical algorithm for estimating the numerical solutions of the Cable
equation with a two-dimensional nonlinear distributed order. The distributed order
derivative is defined in this article in the Liouville-Caputo meaning of Atangana-
-Baleanu-Caputo (ABC). The nonstandard implicit Compact Finite Difference
Method (NICFDM) is the proposed technique. By comparing the proposed method
to the standard implicit compact finite difference method (ICFDM), it will be shown
that the proposed method is more accurate.

The following is how the paper is organised: Section 2 contains definitions for
fractional and distributed orders as well as the preliminary Nonstandard Finite Differ-
ence Method (NSFDM) definitions. In Section 3, we build NICFDM to solve the dis-
tributed order fractional Cable equation in two dimensions. The proposed method’s
stability study is covered in Section 4. Section 5 presents test cases and numerical
simulations to verify our findings. Finally, Section 6 provides the conclusions.

2. Preliminaries
2.1. Nonstandard Finite Difference Method
One advantage of NSFDM, which Mickens proposed in (1980) [12-15], is that it

may be effectively utilised to examine numerically how ordinary differential equa-
tions (ODEs) and partial differential equations (PDEs) behave. The attributes of the
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exact solution of the original ODEs or PDEs can be preserved by the NSFDM. If at
least one of the following criteria is met, the numerical scheme is referred to as
NSFDM [15]:

1. The nonlocal approximation is used.

2. The discretization of the derivative is not traditional and uses a nonnegative
function.

There are many advantages of the applied technique, such as its accuracy, affectivity,
efficiency, and stability, as we clearfied in the results section, and its simplicity to be
applied to the fractional models rather than many different methods.

2.2. Fractional calculus definitions

There are many definitions of fractional derivatives of order ¢ > 0 [16] such
as Griinwald-Letinkov’s definition (GL), Riemann-Liouville’s definition (RL), and
Caputo’s fractional derivative. The RL definition is given as:

1 ar [t
RL o _ “ (n—o—1)
D/ z(t) = 1—1 T)dT 1
20 = For gy iy (9 e 1)
where the value of n cannot be less than «, where n is the first integer, that is,
n—1<a<nandI(-)is a Gamma function.
The Caputo fractional derivative of z(¢) is defined as:

“Dlz(t) = : /t(t —g)rma= D (7yqr. (2)
) Jo

I'h—a

The Atangana-Baleanu fractional derivative in the Caputo sense is defined as [4]:

M(a) [ (=),
ABC o
D/ z(t) = Eq(— d 3
a [Z() (l—a)/() OC( a(l—a))Z(q) q, ()
where, M(a) =1 — o+ % _is normalization function.

I(a)

1
Definition 1. For ¢ # 0, a € (0, 1],where g(a > 0), and / g(a)do = co > 0, both
0

sides (left and right) of fractional derivatives of distributed orders in the Riemann-
-Liouville sense are defined, respectively, by [17]:

1 1
01 (0) = [ (o) Df s (de, DIV 1(0) = [ (o) DG s ()der.

1
Definition 2. For g # 0, a € (0, 1], where ¢(0 < ), and / g(a)do = cp > 0, both
0

sides (left and right) of fractional derivatives of distributed orders in the Caputo sense
are defined, respectively, as follows [18]:
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i ste) = [ gte SE 7, EDI 0= [ g@) DR s )

1
Definition 3. For ¢ # 0, a € (0, 1], where ¢(0 < «) and / g(a)do = co > 0, both
0

sides (left and right) fractional derivatives of distributed orders in the Atangana-
-Baleanu-Caputo sense are defined, respectively, by [18]:

1
D1 1) = [ ge) D8 e, DY 510 = [ a(@) D 0
0

(6)

3. Construction of NICFDM for 2-D Fractional Nonlinear
Cable equation

Here, we look at the 2-D fractional Cable equation’s initial-boundary value
problem, which is typically expressed in the following manner [19]:

g (x,3,1) =47 D Bu(e, v 1) = D" e ) + f(u,x0),

(x,y)€Q, 0<t<T, O<a,B<I, @)

subject to the initial condition
u(x,y,0) = go(x,y), (xy) €L, ®)
and the Dirichlet boundary conditions
w(0,y,0) = g1(n,1), ull,y,0) = ga(x,y), u(x,0,8) = qi(x,1), u(x,r1) = ga(x,y),
where,
Q={(x,y)0<x<l, 0<y<r},

To find numerical solutions to the nonlinear Cable problem (7), we create NICFDM
in this instance. Let’s take into account the grid point’s numerical value of u,
(tas1,%1,y;) = ((n+1)At,iAX, jAy) is denoted by u"Jrl The implicit compact finite
differences approximations for the proposed model i is glven as the following [20]:

—1 n+21 + 4 n+11 _ n+1 + 4 n+11 Lun+21
1. 12 3U 2 + 127i+2,j 4
()} = ( T I ) +0((AX)"),
=1 n+1 4 n+1 5 n+1 4 n+1 n+1
+ o A )
12 2T 3173 3Uijr1 12 J+2
(1) = ( e ) +o((an)*),
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Wit — !
ij ij 2
= —=——2—+O0(A1)". 9
(uf)lj Z(At) + ( ) ( )
The nonstandard implicit compact finite differences approximations for the proposed
model is given as the following

Tzl n+21 + 431 n+11 _ 2 iy + 3 n+11 _ ﬁul'H_Z] )
A+l . i—2,j i—1,j ij Uit i+2,j 4
—1 n+1 4 n+l1 5 n+1 4 n+1 n+1
+3u; o — +
12 z] 2T 3% -1 2 i,j 3 t]+1 12 l,]+2 4
()i = +0(5(Ay)"),
S (E(Ay))?
u'.l"'.'l —u’f—.1
n L] L] 2
L= ——2 L O(0(Ar))“. 10
(uf)t,J Z(G(Al‘)) + ( ( )) ( )
ABCD(] / q ABCDOK )d (11)

1
To approximate the integration / g(a)da, we will use the composite Simpson’s
0

1
rule by letting Ao = 75 and a; =i/ a. Then
J

Ao)*
[ ateaa= Aaz% @) - L), gl ()
where,
1
gu i= 072j7
Y= 7 i=2,4,...,2j—4,2j—2,
a
-, i=13,...,2j-3,2j—1.
3
We discretize (11) as follows:
2 . Aa)t
Ao na(@ D) s~ L 0t (08 g
i=0
2j
= 20 Y 1g()d*DEu() | + O(L0), where & € [0,1]. (13)

i=0
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The discretization of the Atangana-Baleanu fractional operator in the Liouville-Caputo
sense is given by the following equations:

M (-«
IgBCDtlia”(xay)t) XY jstn1 ( n+1 /k DA a ) (tﬂ_x)lia)dx’
1 4l +1 4 i+l
a t XX\ XiyYjstn+1 = ¢(AX)2
Lyl KAt
Uit /( (1-B) 1-B 4
- X E pg(——F%— )dx+O((¢(AX))"),
k; ¢(AX)2] s (
1 4 n+1 n+1 4 n+1
ABCyl— —B) [ & gt - sl qul
a Dt ﬁuyy(xyyvt)|xi7yj,tn+1 = [1; l((j;: (Ay)) bl

n 1 un-i—l (k) At ( B) B
N 1270,j42 —x 1-B n 4
Zhémw)lxalelm =) Pax oG

kAt (1—06) 70[ B
where, /(k—l)At Ei_o(— p (t _x)l )dx =
(1—06) (1—06) (tn_tk)lfa)

(tn — tes1)E1—a(— (tn —tes1)' %) = (tn — ) Er—a(—

(k)Ar 1—
also,/ El_ﬁ(—< B)(tn—x)l_ﬁ)dx:
(k—1)Ar

B
(tn — tir1)E1—p(— a _ﬁﬁ) (tn—ti1)' P) = (ta — 1) Ey_p(— u _ﬁﬁ) (ta—1)"P).

Put

« - (k)Ar .
63:/(” EHI(—(1 aa) (b —x)" %), &F :/( El—ﬁ(_(lﬁﬁ)(fn—x)lﬁ)dx

k—1)Ar k—1)Ar

Substituting (10) and (14) into (7), the resulting equation can be written as follows:

n+1 1

M(1-a) X < Sk wi; —ui;  M(1-B)
uMU A0 (o) Y 5w - AB
a 5 ; 29(At) B
2K Ltk gk S e k+4un+1—_k_i nt1-k
Be 24i—2,; 3%i—-1,j 2%0,j i+1,j 12%i42,j
x ) %a(Be)| ) &
Lnatbo| L8 bAXT

1
24 j—2 3U;j—1 U j 3l j11 127, j+2

_ B
e [ L

— fltnsr,ul 7 xi,y)) = RY, . (15)

n+1 k+4 n+l—k 5 n+1 k+4 n+l—k _ lun-i-l—k]]
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Ry, stands for the truncation error. Scheme (15) creates a nonlinear algebraic system
of (N4 1)(M +1)(Q + 1) equations with both initial and boundary conditions.
To solve this problem, Newton’s iteration approach will be applied [21].

4. Stability and error estimation
4.1. The Atangana-Baleanu fractional operator and NICFDM stability

The following section uses a Jon Von Neumann methodology to discuss the
method’s stability (15). Then, by linearizing this scheme and letting the nonlinear
term f(t,u,x,y) be equal to 0, we will use this technique [22]. Assume that
ui; = EremaAXtmiady where m = v/—1, and ¢, q> are the spatial wave numbers
(which assumed to be real) [23] hence the requirement |{(g)| < 1, and the following
form can be used to express the scheme (15):

2K n
Naa D Z '}’gQ(ag Z l‘xgunJrl —k uan+1 W 1 AB Z Y%eq Bg
§=0 k=1

n
B 1 -k 4 -k D 1k A a1 1—k
Noo Z 6" [_ 12 :l+2j 3M:1+1 Jj 2“7,? gu?jrrl,j - E”?jz,j

! 1 4 5 4 1
_'_Maa252ﬁg [_ 3 ?712k+7 ntl—k _ = ntl—k | :tjrilk_u;ﬁlk]] =0.
k=1

3 Ui j—1 9 i 3 12 iit2
(16)
where,
M1 - a) M(1-B) M(1-B)
Naa =210 (A) 2~ N —20(A1) P pps —20(A1) o F)
o = 2O TG Nop =200 g5 gy Mos =200 B 3,0
a7
. ) n+1
by inserting u; ; = EremiarAXFmiaty in (16) and let n = o m=+—1, and
H= NaaAaZygqocg 25 ‘0 +1—N/3/3A/327g51[3g 25&
k= k=1
. icfkefbnqlAX + 7C7kefmq1AX . égfk_'_ 7C7kemq1AX . 7C7k62mq]AX
Be 1 —k ,—2mgyAy 4 —k ,—mqrAy 5 —k
_MBﬁAﬁZYg‘] Be) 28 _EC € +§C € _EC
g= k=1

4 —k jmgrAy 1 —k 2mgy Ay
= - — . 18
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Then, after some simplifications, we have

1 1
H=_—.and C?H=1 =|—1<1. 1
n C,an 4 e !\/HIS (19)

1
So the scheme (15) will be stable under the condition: ’ﬁ‘ <1.

5. Numerical examples
Example 1. [9] Consider the following numerical example to test our theoretical
analysis on an elliptical domain

du(x,t
ot

1 1
) _ / T3+ a)§D!*Au(x,t)do — / T3+ B)ED Pu(x,1)dp,
0 0
+f(x,1), (x,0) e QxI,
u(x,1) = £3sin(27x) sin(27y), (x,1) € 9Q x Lu(x,0) =0, (x,y) €Q,  (20)

where S Q = {(x,y) | 4x* 4y < 1} is the convex spatial domain and / = (0, 1] is the
temporal interval. The exact solution of (20) is

u(x,t) = 13 sin(27x) sin(27y),

then we get the source term as

32

t . .
In(0) ) sin(27x) sin(2my).

f(x,t)= <3t2+6(1+87r2) !

Table 1. The L, — error by the proposed numerical method (15) and method presented in [9]

At Error in [9] Erorr in the proposed method
0.0399 | 4.3968E — 02 2.7872E — 09
0.0299 | 9.6083E — 03 3.5588E — 09
0.0233 | 2.2811E —03 5.39932E — 09

In Example 1, the approximate solutions have been obtained using the pro-
posed method (15) where 6(Ar) = 0.001(1 —e "), ¢(Ax) = 0.001(1 — e 2¥), and
E(Ay = 0.001(1 —e™™)) and the error computed by L, — error. Table 1 shows the
Ly — error which was obtained by the proposed numerical method (15) compared
with the one in [9]. It shows that the proposed method has high accuracy and gives
results better than the results in [9]. Figure 1 shows the behavior of the numerical
solutions of (20) for the following data N = 20, ¢ = 0.9, 8 = 0.6. Figure 2 shows
the behavior of the numerical solutions of (20) for the following data N = 30,
oa=04,8=0.7.
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Fig. 1. The comparison between the exact solution, numerical solution and the resulted

errorath = —
20
Approximate
255N

7
R OSIN

LS
TSR

25%"
77% 5>
N

exact

02

Fig. 2. The comparison between the exact solution, numerical solution and the resulted
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Example 2. [9] In this example, consider the nonlinear model on the irregular domain

| 1
Wé’;,t) :/0 KagD}*“Au(x,t)da—/o KD, Pu(x,0)dB + f(x,) + g(u),

where Ko = I'(3+ ), Kg =T'(3+ ) and u(x,t), is the same as Example 1 with

nonlinear term g(u) = u —u’.

Approximate exact

15

: | //*
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AN o

-
0 01 02 03 04 05 06 07 08 09 1
x

Fig. 3. The comparison between the exact solution, numerical solution and the resulted

1
th=—
error a 0

Table 2. The maximum error obtained by our proposed numerical method compared with the method
presented in [9]

At Error in [9] Erorr in the proposed method
0.0699 | 2.7593E —02 0.0010
0.0249 | 6.7794E — 03 9.9038E — 04

In Example 2, the approximate solutions have been obtained using the pro-
posed method (15), where 6(Ar) = 0.001(1 —e "), ¢(Ax) = 0.001(1 — e~2), and
E(Ay =0.001(1 — ™)) and the error computed by L, — error. Table 2 shows the
L, — error which is obtained by the proposed numerical method (15) compared with
the one in [9]. It shows that the proposed method has high accuracy and gives results
better than the results in [9]. Figure 3 shows the behavior of the numerical solutions
of (5) and compares them with the exact solution for the following data o = 0.1,
B = 0.3. The same is true for Figure 4 but with different data &« = 0.7, 8 = 0.4.
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Fig. 4. The comparison between the exact solution, numerical solution and the resulted
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6. Conclusions

Using a higher accurate non-standard implicit compact finite difference method,
numerically approximate solutions of the two-dimensional nonlinear distributed
order Cable equation are introduced. The distributed fractional order is defined
according to Atangana-Baleanu. The key advantage of this strategy is the large sta-
bility areas it implicitly has. The stability analysis of the suggested approaches is the
main theoretical part of this study. To do this, we have resorted to a form of John
von Neumann stability analysis. Numerical results are given to illustrate the accuracy
of the proposed approach. The entire computation in this paper was done using the
MATLAB computer language.
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