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Abstract. The apparatus of holomorphic functions of many complex variables is applied to 

solving spatial boundary value problems of the linear theory of elasticity. The construction 

of the solution of the boundary value problem is based on the representation of the dis- 

placement vector in the form of J. Dougall through spatial harmonic potentials. The transition 

from spatial harmonic potentials to holomorphic functions of two complex variables z1, z2 

was carried out and a boundary value problem for the above functions was formulated.  

By presenting these holomorphic functions in the form of homogeneous polynomials of  

order k relative to complex variables z1, z2, solutions were constructed by the method of  

development of the complex tensor of stresses by basic states. The application of this 

technique is illustrated in the examples of marginal problems, the real components of 

solutions that correspond to the solutions of Grashof’s problem for an elastic beam. Imagi-

nary components of exact analytical solutions are obtained and corresponding structures  

of external load vectors for elastic beams of complex cross-section are constructed. 
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1. Introduction  

The application of the apparatus of harmonic and biharmonic functions in the 

presentation of the fundamental solution of equilibrium equations in displacements 

became the basis of analytical methods for solving problems of the spatial static 

theory of elasticity. The founders of this method of constructing solutions were Airy, 

Boussinesq, Papkovich, Neuber and Dougall. Proving the completeness of general 
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solutions, the existence of relationships between them, and the construction of  

solutions of boundary value problems were discussed by Eubanks and Sternberg, 

Timoshenko and Goodier, and others [1-6]. In particular, [7, 8] created a universal 

design scheme for the development of general solutions and assessment of their 

completeness and non-unity within the framework of the classical theory of elastic-

ity. The issue of optimizing the number of harmonic potentials in the Papkovich- 

-Neuber representation using the variational approach was analyzed in [9].  

In the case of a plane problem, Kolosov and Muskhelishvili presented the com-

ponents of the displacement vector and the stress tensor through two analytic func-

tions of a complex variable and developed a method for constructing solutions for 

multi-connected domains based on the use of Cauchy-type integrals and conformal 

mapping. Aleksandrovich [10] considered three-dimensional problems of elasticity 

theory as a partial class of problems of four-dimensional theory and obtained solu-

tions using the functions of two complex variables. Important results regarding  

the application of p –, (p, q) – analytical functions for solving boundary value prob-

lems owned by Polozhiy [11]. 

The application of functions of complex variables for the construction of solu-

tions to problems of the elasticity theory for inhomogeneous bodies, piezoelectric/ 

piezomagnetic bimaterials in two-dimensional and three-dimensional settings are 

covered in works [12-15]. 

This work aims to expand the set of exact analytical solutions for a confined 

elastic body of a complex cross-section based on the representation of the funda- 

mental solution of the equilibrium equations in Dougall’s form through three spatial 

harmonic functions [16]. To achieve this aim, the method of setting and construct-

ing solutions of boundary value problems in the spatial theory of elasticity in holo- 

morphic functions of two complex variables is used [17]. On the basis of Dougall’s 

representation, the boundary value problem of the theory of elasticity for complex- 

-valued functions is formulated. On the set of these functions, a subset of holomor-

phic functions of two variables z1, z2 is selected. The obtained results make it pos-

sible to present the complex displacement vector and stress tensor through the 

above-mentioned holomorphic functions and to formulate the basic complex- 

-conjugate problem for harmonic potentials. An algorithm for constructing basic  
 

states for a complex stress tensor of order k by presenting holomorphic functions 

1 2( , )i z z ( 1,3)i   in the form of homogeneous polynomials of order k with respect 

to variables z1, z2 has been developed. The structures of the real and imaginary 

components of the basic state of order k were obtained. 

The aim of the work is also to obtain, based on the developed approach, exact 

analytical solutions, which are imaginary components of complex basic solutions, 

the real components of which correspond to Grashof’s solution. The obtained set of 

solutions will make it possible to form the structure of the external load for an elas-

tic finite body and, accordingly, to optimize the stress state in the middle of elastic 

mechanical constructions of a complex cross section. 
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2. Materials and method 

Consider a homogeneous elastic isotropic solid body ,K K∪  which in the ini- 

tial state is bijectively mapped onto the region X X∪  of the Euclidean space.  

A stationary force load is applied to the surface of the body X.  

We formulate the static boundary value problem of the linear theory of elasticity 

for a given isotropic elastic body: 

– the equilibrium equation (Lamé equations): 

     0        u u  (1) 

– the boundary condition on the side surface X:  

  ˆ ,
X




  n nσ n σ σ  (2) 

– stress tensor σ̂  is presented through the displacement vector u:  

    ˆˆ .       σ u I u u  (3) 

Here u is the vector of displacements; Î  is the unit tensor; n is the vector of the  

external normal; nσ  is the stress vector; r is the radius vector of an arbitrarily  

selected point of the body; 
nσ  is a given vector of surface forces that satisfies the 

conditions of self-equilibrium of the external load on the lateral surface of the body 

X;    r  is the Hamilton’s nabla-operator;      is the Laplace operator; 

,  are the elastic Lamé constants;  is the operation of the dyadic product. 

2.1. Basic relations and formulation of boundary value problems of the linear 

spatial theory of elasticity in J. Dougall’s harmonic potentials 

Consider the presentation of the fundamental solution of Lamé equations (1) 

 1 2 3, ,
i
u x x x iu e  in Dougall’s form [16] through harmonic functions  1 2 3, ,

i
x x x  

in the Cartesian coordinate system  ix ( 1,3):i   

 

 

2 2
3 31 2 1 2

1 1 2 22 2
1 2 2 13 3

1 1 2
3 1 2 1

3 1 2 3

, ,

4 1 ,

u x u x
x x x xx x

u x x
x x x x

    

  
 

    
     

    

   
      
    

 (4) 

where ie  are basic orts of Cartesian coordinate system ( 1,3);i    ix  are coordi- 

nates of an arbitrarily selected material point ;x X   – Poisson’s ratio. 
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Based on this representation of the displacement vector u (4), we find the com-

ponents of the stress tensor  1 2 3
ˆ , ,x x xσ  (3): 

 

 

 

2
31 2

11 1 12
1 1 1 23

2
31 2

22 1 22
2 2 2 13

22
1 1 2

33 1 1 22 2
1 23 3

2 1 ,
1

2 1 ,
1

2 2
1

E
x

x x x xx

E
x

x x x xx

E
x x

x xx x

 
  



 
  



  
  



      
                   

      
                    

    
            

 

 
 

 

2 222
3 31 1 2

12 2 12 2 2 2
1 23 3 1 2

22 2 2 2
31 1 1 1 2

23 1 2 2 2
3 1 2 2 2 3 1 33 2

2
1

13 2

3

,

2 ,
2 1

4 5 2 ,
2 1

2 1

E
x x

x xx x x x

E
x x

x x x x x x x xx x

E
x

x

   




    
 








      
              

        
                         


 

  
 

22 2 2
31 1 1 2

1 2 2
1 2 1 1 3 2 33 1

4 5 2 ,x
x x x x x x xx x

   


       
                    

 

  (5) 

where  2 1 ,E    E – Young’s modulus.  

The boundary value problem of the linear theory of elasticity (1)-(3) is reformu-

lated as a boundary value problem on harmonic functions  1 2 3, , :i x x x  

  1 2 3, , 0,     (6) 

that satisfy the corresponding boundary conditions: 

    ˆ ( , 1,3).
ii ij nX X

n i j 
 

    n j jσ n σ e e  (7) 

2.2. Construction of the solutions to the problem of the elasticity theory  

by the method of development of the stress tensor according  

to the basic states  

On the basis of the methodology proposed in the work [17], complex variables 

z1, z2, z3 are introduced in accordance with real variables x1, x2, x3 in the Cartesian 

coordinate system, as follows: z1 = x1 + ix2 , z2 = x2 + ix3 , z3 = x3 + ix1 . 

The introduced complex variables and harmonic potentials  1 2 3, , ,i x x x  

 *
1 2 3, , ,i x x x  from the representation of displacement vectors  1 2 3, ,x x xu  and 

 *
1 2 3, ,x x xu  (4) make it possible to form functions from complex variables 

z1, z2, z3 as follows:      *
1 2 3 1 2 3 1 2 3, , , , , , ,i i iF z z z x x x i x x x    ( 1,3).i    
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In the continued methods, on the set of complex-valued functions  1 2 3, , ,iF z z z  

a subset of complex-conjugate problems is distinguished, which are described by 

holomorphic functions  1 2, ,i z z  ( 1,3),i   from two complex variables z1, z2, for 

which the following conditions are fulfilled:  1 2 3 3, , 0,iF z z z z   which impose 

bonds on harmonic potentials  1 2 3, , ,i x x x   *
1 2 3, ,i x x x  and are a generalization 

of the Cauchy-Riemann conditions: 

* * *

1 3 2 2 3 1

, .i i i i i i

x x x x x x

          
   

     
 

Thus, the boundary value problem on harmonic functions  1 2 3, ,i x x x  (6)-(7) 

is reformulated as a boundary value problem on holomorphic functions  1 2,i z z  

of two complex variables z1, z2 that satisfy the Laplace equation: 

  1 2 3, , 0      (8) 

and the corresponding boundary conditions: 

    
1 2 31 2 3

ˆ .n i ij j n n n n
XX

n P P P P   


      P n P e e e e P  (9) 

where      1 2 3 1 2 3 1 2 3
ˆ ˆ ˆ, , , , , ,z z z x x x i x x x  *
P σ σ  is the complex stress tensor; 

2
1 2z z      – the Laplace operator. 

Let us present the complex vector of displacements  1 2 3, , iz z z  iw e  through 

holomorphic functions  1 2,i z z  ( 1,3):i   

 

 

 

   

2
* 31 2 2

1 1 1 1 2 3 2
2 1 12

2
* 3 31 2

2 2 2 2 3 1 2
1 2 12

2
* 31 1

3 3 3 2 3 1 2
2 22

1
,

2

1
,

2

1
4 1 .

2

i
u iu z iz z i

z z zz

i
u iu z iz z i

z z zz

i
u iu z iz z i i

z zz





 

     
         

    

    
         

    

  
       

 

 (10) 

The components of the stress tensor      1 2 3
ˆ ˆ, ,z z z        P w I w w  

take the form: 
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 

    

  

   

22 2
31 2

11 2 2 2
2 1 1

2 22 3 2
3 31 1 2

22 2 3 12 3 2 2 2
2 2 1 2 1

22 3
31 1

33 2 3 12 3 2
2 2 2

3 2
1 2

12 1 2 3 3
2

2 2 ,

2 1 2 2 ,

2 1 2 ,

1

2

P i
z z z

P i z iz z i
z z z z z

P i z iz z
z z z

i
P z iz z

z

   

    

  

 

    
    

  

         
          

     

    
      

  

    
    



    

   

22
32

2 2 2
2 1 1

23 2
31 1

23 2 3 1 3 2 2
2 2 2

3 2
1 2

13 1 2 3 3 2
2 2

2 2 ,

1 4 5 2 ,

1
.

2

i
z z z

P i z iz z i i
z z z

i
P z iz z i

z z



   

 

    
  

   

    
      

  

    
   

 
  (11) 

Thus, the problem of constructing a complex displacement vector  1 2 3, ,z z zw  

(10) and a stress tensor  1 2 3
ˆ , ,z z zP  (11), which are represented by holomorphic 

functions  1 2,i z z  of two complex variables z1, z2 and satisfy the boundary con- 

ditions (9), will be interpreted as the basic complex-conjugate boundary value  
 

problem of the theory of elasticity. 
To deduce the structure solutions of the above-mentioned boundary-value prob-

lems, we present the holomorphic functions  1 2,i z z  in the form of polynomials 

of order n in degrees of complex variables z1, z2: 

        1 2 1 2

0

, , , ( 1,3)
n

n k

i i

k

z z Q z z i


    (12) 

where  

       
1 2 1 2

0

, , ( , 0, )
k

k j jk k j j
m m

j

Q z z a z z j k n
 



   (13) 

are homogeneous polynomials of degree k in complex variables z1, z2 that satisfy  

the Laplace equation: 
   2

1 2 1 2, 0,
k

mQ z z z z     

        
;

k j j k j j k j j

m m ma i      

     
, , ( 1,3)

k j j k j j

m m m      

are real numbers. 

If we use representation (13) for homogeneous polynomials 
 ,
k

mQ  then relations 

(12) acquire the structure of "k-ary" forms (unary, binary, ternary, etc.) with respect 
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to independent complex variables z1, z2, which we will use to construct solutions  

of the original boundary value problem: 

 
       0 0

1 2 1 2, , ( 1,3), ( 0, ).
k k kk k

m m mQ z z a z a z m k n     (14) 

To construct a complex stress tensor 
 ˆ n

P  of order n, we present holomorphic 

functions   1 2,m z z  in the form of homogeneous polynomials  

   1 2,
n

mQ z z  of  

degree n + 2: 

 
             2 0 0 22 2 2

1 2 1 2, , ( 1,3).
n nn n n

m m mz z a z a z m
        (15) 

Then the components of the complex stress tensor  1 2 3
ˆ , ,z z zP  of order n are 

given as follows:  

 

                 
           
              
          

                  
 

2 0 2 0 0 2

11 2 3 1 1 2

2 0 2 0

22 2 3 1

0 2 0 2 0 2

1 3 1 2

0 2 0 21 1
1 1 2 1 2 3

2 0 0 2 2 0

33 1 1 3 2

2 1 2 ,

2 1 2

1

1 1 ,

2 1 2 1

1

n n nn n n

n nn n

n n n n

n nn n

n n nn n

P n n ia a z a z

P n n ia a z

a a i na z

i na z z i na z z

P n n a i na a z

i n

  



  

 

  



  

 

  

  

  

     

     

      

   

        

          
                    

          
                  

         

0 2 0 21 1
1 1 2 1 2 3

2 0 2 0 0 2 0 2

12 2 3 1 2 1 2

0 2 0 21 1
1 1 2 1 2 3

0 2 0 2 0 2

23 1 1 3 2

0 2 0 21
1 1 2 1

1 ,

1 2 2 1

1 1 ,

2 1 2 2 5 2 1

1 1

n nn n

n n n nn n n

n nn n

n n nn n

n nn

a z z i na z z

P n n a ia z a i na z

i na z z i na z z

P n n ia i na ia z

i na z z i na





 

  

   

  

  

 

 

        

   

       

    
             

          

1
2 3

0 2 0 2

13 1 2 2

0 2 0 21 1
1 1 2 1 2 3

,

1 2 1

1 1 .

n

n nn n

n nn n

z z

P n n i na ia z

i na z z i na z z





 

  

      

   

 

  (16) 
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To form the appropriate structure of the boundary conditions on the side surface 

of the body X with the normal n, for each basic stress state 
   1 2 3

ˆ , ,
k

z z zP  of order 

k, there is the following expression of the stress vector: 

 
       ˆ .

k k

i ij
X X

n P
 

  k

n jP n P e  (17) 

Next, the solution of the boundary value problem is constructed for the complex 

stress tensor 
 kP̂  of order k (the base state of order k), which is generated by  

homogeneous polynomials: 

 
                 2 0 0 22 2 2 2

1 2 1 2 1 2, , , ( 1,3).
k kk k k k

m m m mz z Q z z a z a z m
          (18) 

will be interpreted as a solution of order k of the basic boundary value problem. 

3. Example of the solutions of the complex-conjugate boundary 

problems for an elastic beam  

The application of the method of holomorphic functions of two complex varia-

bles will be illustrated by examples of constructing complex-conjugate solutions 

for an elastic finite beam. 

An elastic beam with a length of l is considered, the closed contour of its cross- 

-section is described by equation      1 2 2
1 2 2 1, 1 0,f x x x b x a       0 1 ,   

 , ,a b const  which is bent by a force P applied to its edge and parallel to one of 

the main axes of the cross-section (in particular, x2).  

Let’s take the origin at the center of gravity of the fixed end of the beam. Axis 

x3 coincides with the middle line of the beam, and axes x1 and x2 coincide with the 

main axes of the cross section. Assume that the normal stress in a particular section 

at a distance x3 from the fixed end is distributed in the same way as it is in the case 

of pure bending:  33 3 2 ,P l x x I     where I is the moment of inertia of the 

cross section of the beam. 

Consider the real component of the solution, which corresponds to the solution 

known from the literature [18] for a given elastic beam, and is presented as a su-

perposition of the basic states of the stress tensor of the zeroth, first, and second 

order: 

     0 1 2ˆ ˆ ˆ ˆ ,  P P P P  

where 
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                         

     

 
   

   

0 0 0 0 0 2 2 2 1 1 1 1 1

11 22 33 12 13 11 22 12 11 22 23 12 13

1 2 2

33 33 33 2 2 3 13 13 1 2

0 2 2 2
23 23 23 2

0, 0, 0,

Re , Re ,
1

Re .
2 1

Pl Pl P
P x x x P x x

I I I

P
P b x

I

            


  




 



            

       


   


 

  (19) 

Using relations (16) (n = 0) and (19), we obtain a system of equations for find- 

ing the coefficients of holomorphic functions 
   2

1 2,m z z  for the real part of the 

stress tensor of order zero  0ˆRe ,P  and after analyzing them, we obtain: 

 

                 

 

 

02 02 02 20 02 02 20 20 20

1 2 3 2 1 2 3 3 2

2
02

3

0, , ,

.
2 1

Pb

I

        


 

      




 (20) 

This result, based on the relation (16) (n = 0), makes it possible to obtain the 

imaginary part of the stress tensor  0ˆIm :P  

 
              

 
  

 

2 2
0 * 0 * 0 * 0 * 0 * 0 *

11 12 13 23 22 330, , .
2 1 2 1

Pb Pb

I I
     

 
      

 
 (21) 

Let’s proceed to the analysis of the real part of the stress tensor 
 1ˆReP  of the 

first order. Using the relation (16) (n = 1), we obtain a system of equations for find-

ing the coefficients of holomorphic functions 
   3

1 2, :m z z  

 

             

         

03 03 03 30 03 03 03

1 2 3 1 1 2 3

30 30 30 30 03

2 3 3 2 3

0, 0,

, , .
Pl

I

      

    


      

   
 (22) 

and, accordingly, the expressions for the imaginary part of the stress tensor  1ˆIm :P   

 

        

        

1 * 1 * 1 *

11 12 13

1 * 1 * 1 *

22 3 33 3 23 2

0,

12 , 12 , 12 .
Pl Pl Pl

x x x
I I I

  

  

  

   
 (23) 

Similarly, after analyzing the real part of the second-order stress tensor  2ˆRe P  

based on relation (16) (n = 2), we will obtain a system of equations for finding  

the coefficients of holomorphic functions 
   4

1 2, .m z z  
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             

         

 

04 04 04 40 04 04 40

1 2 3 1 2 3 1

40 40 40 40 04

2 3 3 2 1

0, 0,

, , .
24 1

P

I

      


    

 

      

    


 (24) 

As a result, we will obtain expressions for the imaginary part of the stress tensor 
 2ˆIm .P  

 

    
      

 
   

  

 
    

 
    

 
  

 

2 * 2 *2 2 2 2
11 2 3 22 2 3

2 * 2 *2 2
33 2 3 12 1 2

2 * 2 *

23 1 2 13 1 3

3
, ,

1 1

2
, ,

1 1

4 7 , .
1 1

P P
x x x x

I I

P P
x x x x

I I

P P
x x x x

I I

      
 

    

   
 

   

 
  

 

    
     

   

  
   

  

   
 

 

  (25) 

The obtained results (21), (23), (25) make it possible to form the general imagi-

nary part of the stress tensor ˆIm :P  

 

          
        

 
  

        

 
  

        

 

0 * 1 * 2 * 2 2
11 11 11 11 2 3

2
0 * 1 * 2 * 2 2

22 22 22 22 3 2 3

2
0 * 1 * 2 * 2 2

33 33 33 33 3 2 3

0 * 1 * 2 *

12 12 12 12 1 2

Im ,

Im 12 3 4 ,
2 1

Im 12 2 1 3 ,
2 1

Im ,
1

Im

P
P x x

IE

P b
P lx x x

I E

P b
P lx x x

I E

P
P x x

I

P


  


   




    




  



    

 
         

  

 
         

  

   


        

 

          
 

0 * 1 * 2 *

13 13 13 13 1 3

0 * 1 * 2 *

23 23 23 23 2 2 3

,
1

4 7
Im 12 .

1

P
x x

I

P
P lx x x

I


  




  



    


 
     

  

 

  (26) 

Let us present the vectors of external loads for a given elastic beam, which  

correspond to the imaginary part of the solution Im .nP  

On the surface 3:X  3 0,x    3 3 0,0,1 : n e  
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   
 

 
  3

2
2

3 2 2 3
0

1 3
ˆIm Im 12 2 .

2 1 1 1 2x

P b
lx x

I

 
  

    
               

3n 2P n P e e   

  (27) 

On the surface 3:X   3 ,x l    3 3 0,0, 1 :    n e  

 

     

    
 

  

3
3 1 1 2

2 2
2 2

2 3

5 16ˆIm Im
1 1

1 36 6 13
2 2 .

2 1 1 1 2 1 1 2

x l

P
lx lx

I

b
l x

 
 

  
    

 


   
               

      
                     

3n 2P n P e e

e

 (28) 

On the surface 2:X       1
2 2

1 2 2 1, 1 0,f x x x b x a      2 ,i in f f  2n e
� �

  

 
  

 

1 1 12
21

21 22
1 12 22 1 2 1

2 2 4 2 2 4
1 2 1 2

2
, .

4 4

a xb x
n n

b x a x b x a x

 

  



 



 


 

 

 

As a result, we get the following structure of the external load vector on the  

surface 2:X  

 

 
 

 

       

 

        
 

2
2

1

2 2
2 1 2 3

12 2 1
2 2 4

1 2

2
12 2 2

1 2 2 3 3 1

2
12 2 2 2 2

1 2 2 1 3 2 3

Im Im 2

4

3 4 12
2 1

2 1 2 12 3 4
2 1

i ij
X

P b
n P x x x

I E
b x a x

E b
c a x x x lx x

E b
x x x a x lx x x











 

  
 

 






   



   
                    

  
               

n jP e

e

     
 

2

2 2 2
1 3 1 3 3

4 7
2 1 2 12 .

1

E
x x a x l x


 

 

 
  
 
 

  
           

e

e

 
  (29) 

where   1 1 2 .E       
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4. Conclusion 

In this work, the apparatus of holomorphic functions of two complex variables 

is used to find a set of exact analytical solutions to spatial boundary value problems 

of the linear theory of elasticity. 

The method proposed in [17], which is based on the fundamental solution in the 

form of J. Dougall, made it possible to represent the complex displacement vector 

 1 2 3, ,z z zw  and the complex stress tensor   1 2 3
ˆ , ,z z zP  through holomorphic 

functions of two complex variables z1, z2 and to formulate the basic complex- 

-conjugate problems of the spatial theory of elasticity. Using the representation of 

holomorphic functions  1 2,i z z  ( 1,3)i   in the form of corresponding homoge- 

neous polynomials 
   1 2,
n

mQ z z  ( 1,3)m   of degree n + 2, the structure of complex 

basic solutions  ˆ n
P  of order n was obtained. This approach made it possible to 

obtain natural connections between harmonic potentials of complex-conjugate 

solutions, specify the structure of the real and imaginary parts of the basic states 
( )ˆ k

P  and, accordingly, form a subset of exact analytical solutions. An example of  

a boundary value problem illustrates the application of the technique, the real com-

ponents of whose solutions correspond to the solution of the Grashof problem for  

a beam of complex cross-section. Imaginary components of the solutions were  

obtained and the structure of the corresponding external loads was specified on 

each of the lateral surfaces for the above-mentioned problems. 

The examples given in the work can be effectively used to describe the stress-

deformed state of structural elements of industrial equipment in order to calculate 

and optimize the parameters of their reliable functioning. 
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