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Abstract. In the following paper, the numerical analysis of thermal processes occurring in 

biological tissue with uncertain parameters is presented. The heat transfer model is based 

on the Pennes equation, where interval heat sources are introduced. The model is assumed 

to be transient and one-dimensional. Additionally, analysed tissue is exposed to laser irradi-

ation, and the internal heat sources resulting from laser irradiation based on the Beer law 

are taken into account. Moreover, the perfusion rate and the effective scattering coefficient 

are treated as variables dependent on tissue damage. For numerical calculations, the interval 

version of the Finite Pointset Method has been used. All calculations are performed due to 

the direct interval arithmetic rules. The paper is concluded by presenting the obtained results.  
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1. Introduction  

In this study, the application of the Finite Pointset Method (FPM) to solve heat 

transfer problem in biological tissue with uncertain parameters introduced as directed 

interval numbers is presented. The heat transfer model is based on the Pennes equa-

tion, considering the model as transient and one-dimensional [1, 2]. Moreover, the 

paper considers the impact of laser irradiation, which is represented through a model 

based on the Beer law. This law describes the attenuation of laser energy as it passes 

through tissue. Understanding this aspect is essential for gaining a comprehensive 

insight into the absorption and conversion of laser energy into thermal energy within 

the tissue [3]. This knowledge is extremely important across a range of sectors, partic- 

ularly in medical domains like laser therapy, in oncology, and surgical techniques. 

The integration of laser technology in medical practices has seen substantial growth, 

underscoring the need to grasp the fundamental mechanisms and enhance their  

effectiveness.  
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It is assumed that the perfusion rate and the effective scattering coefficient in 

the model depend on tissue injury. This accounts for the ever-changing nature of 

tissue response to laser irradiation, where alterations in blood flow and tissue prop-

erties can arise due to thermal damage [4]. 

In the computational part of this study, the interval version of the FPM has been 

applied, to the best of the author’s knowledge, for the first time. Directed interval 

arithmetic as a way of introducing uncertainties of parameters has already been 

successfully applied in other topics like the solution of the Boltzmann transfer 

equation [5], modelling of heat transfer during cryopreservation [6], or the analysis 

of the tissue damage during the heating process [7]. 

The classical version of the FPM adopts a Lagrangian approach that is fully 

meshless [8]. The FPM relies on the weighted least-squares technique to estimate 

spatial derivatives and solve elliptic partial differential equations. It has already 

been applied in various fields, including fluid mechanics [9, 10], radiative and con-

ductive heat transfer problems [11], and linear elasticity-related issues [12]. Nota-

bly, one of the key advantages of this meshless approach is its capacity to handle 

complex geometries and irregular boundaries [13]. In problems with the fast 

changes in the computational domain of the fluid, like Fluid-Structure-Interactions, 

the FPM found its application as well [14]. In contrast to the conventional Finite 

Element Method or Finite Difference Method, the FPM does not necessitate  

a structured mesh. Instead, it employs a collection of scattered nodes throughout 

the domain, making it exceptionally versatile for intricate geometrical configurations.  

2. The Pennes equation with interval parameters  

The Pennes bioheat partial differential equation, along with its suitable bounda-

ry conditions, serves as a mathematical framework employed for depicting the 

temperature distribution within biological tissues when exposed to diverse heat 

sources, such as laser irradiation. This equation considers parameters like heat con-

duction, volumetric specific heat, perfusion (blood flow), metabolic heat produc-

tion, and the ab-sorption of heat from external sources. Especially values of heat 

sources are difficult to estimate, as indicated by the various mathematical models 

used to describe them. For this reason, it was decided in this article to especially 

treat these parameters (among others) as uncertain and define them as directed  

interval functions: 

      , , ,perf met lasQ x t Q x t Q Q x t    (1) 

where , ,perf met lasQ Q Q  [W/m3] are the interval heat sources connected with perfusion, 

metabolism and laser irradiation. 

The basic form of the Pennes equation in the 1D domain with direct interval param- 

eters is as follows [4]: 
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 
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where  [W/(m K)] is the thermal conductivity, c [J/(m3 K)] is the volumetric specif-

ic heat. Moreover, T  [°C] is the interval temperature, t [s] is the time, and x [m]  

denotes the spatial coordinate. 

The considered interval laser heat source is defined based on the Beer’s law  

and introducing direct interval parameters [15]: 

      0, explas t tQ x t I x s t     (3) 

where 0I  [W m−2] is the interval surface irradiance of the laser and s(t) is the func- 

tion equal to 1 when the laser is on and equal to 0 when the laser is off, whereas t   
[m−1] is the interval attenuation coefficient defined as: 

 t a s      (4) 

where a  [m−1] is the interval absorption coefficient and s  [m−1] is the interval  

effective scattering coefficient that can be treated as a constant value or as a func- 

tion of the interval injury Arrhenius integral as well: 

       exp 1 exps snat sden             (5) 

The interval injury Arrhenius integral is defined as [4]: 

    0

ˆ, exp
ˆ,

t
E

x t A dt
RT x t


 

  
  

  (6) 

where A [s−1] is the pre-exponential factor, E [J mole−1] is the activation energy of 

the reaction R [J mole−1 K−1] is a universal gas constant (for values of parameters 

see Table 3). 

The interval perfusion heat source function is taken into account is as follows: 

       , , ,perf B B BQ x t c G x t T T x t    (7) 

where BG  [(m3
blood s−1)/(m3

tissue)] is the interval blood perfusion rate, cB [J m−3 K−1] is 

the volumetric specific heat of blood while TB [°C] denotes the artery temperature. 

Additionally, the interval blood perfusion coefficient is a function determined 

based on the tissue’s necrotic alterations [4]: 

      0, ,B BG x t G w x t    (8) 
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where 0BG  represents the interval initial perfusion rate, and we assume that function 

w follows an interval polynomial form [4]: 

     
3

1

1

, ,
j

j

j

w x t m x t 




   (9) 

where mj are specified coefficients (see Table 2). 

Moreover, equation (1) must be supplemented by the boundary-initial conditions. 

The analysed model is supplemented by the boundary condition of the third type  

on a tissue surface subjected to a laser irradiation 

   
0

0 : , amb

T
x T x t T

n
 


   


 (10) 

where n0 [m] is an external normal vector (n0 = [nx, ny, nz]),  [W m−2 K−1] is the 

convective heat transfer coefficient and Tamb [°C] is the temperature of the surround- 

ing area. On the internal tissue surface (x = L), the adiabatic condition is assumed. 

The initial distribution of temperature has been assumed as a constant value T0 [°C]. 

The suggested interval model more accurately represents the heat transfer process 

in living tissue when compared to the classical Pennes equation, which assumes 

single-valued thermal and optical parameters. The interval Pennes equation must 

be solved numerically due to the rules of the interval arithmetic to predict the tem-

perature distribution in a form of intervals. In this paper, it is proposed to apply  

the interval FPM which is described in detail in Section 3. 

3. The Interval Finite Pointset Method  

The FPM is a meshless Lagrangian approach that employs the weighted least-

squares interpolation technique to estimate spatial derivatives and solve partial dif-

ferential equations [9]. The FPM uses Taylor series to calculate function and deriv-

ative values, which naturally emerge as unknown coefficients in the series. A more 

comprehensive guide on applying the classical version of the FPM can be found in 

various literature sources [8-12]. In this section, we will outline the fundamental 

concept of the interval version of the FPM (called further Interval Finite Pointset 

Method), specifically applied to the Pennes equation. This method (IFPM) is a result 

of applying directed interval arithmetic to the FPM. The parameters considered as 

directed interval numbers are described in detail in Section 2. 

First, the main idea of the classical version of the FPM needs to be explained. 

For this purpose let's consider a domain X with a defined boundary. The descrip-

tion included here is intentionally for three dimensional space, although numerical 

examples are presented for a one dimensional case. Within this domain X, we have 

a collection of n points x1, x2, …, xn (xj = [ 1 2 3, ,j j jx x x ], j = 1, …, n), each associated 
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with respective function values f(x1), f(x2), …, f(xn). The objective is to approximate 

the value of f at an arbitrary location x (x = [x1, x2, x3]). To achieve this, we define 

the approximation of f(xj) using a Taylor series expansion (
k k k
j jdx x x  , k = 1, 2, 3) 

centered around x: 

        
3 3

1 , 1

1

2

k k l
j k j kl j j

k k l

f x f x f x dx f x dx dx
 

   ɶ  (11) 

The values that are not known f(x), fk(x), fkl(x), (k = 1, 2, 3, l = 1, 2, 3) are obtained 

from a weighted least squares method achieved by minimizing the quadratic  

expression while considering all neighbor points (np): 

  2

1

np

j

j

J w Ma b


   (12) 

where  ,j jw w x x  and 

    2 2exp
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

 (13) 

where   is a positive constant. The value h is a radius that defines a set of neighbor 

points around x. 

Equation (12) can be expressed in the form: 

    T
J Ma b W Ma b     (14) 

where 
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⋯
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⋯

 (15) 

Formally, the minimization of the function J results in: 

    1
T Ta M WM M W b


   (16) 

In this point, we assume that x belongs to the interior part of X. Moreover matrix 

M, taking into account equation (11) for all neighbor points around x, then adding 
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the Pennes equation (here the unknown function is denoted f and t is a time step) 

that must be satisfied (2), is defined as follows: 

     
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  (17) 

Then a and b take the following form (  is a time counter): 

                  1 2 3 12 13 22 23 33, , , , , , , ,
T

a f x f x f x f x f x f x f x f x f x     (18) 

          1 1 1 2
1 2, , , ,2 2

T

npb f x f x f x tQ cf x t f x              …  (19) 

Now, introducing interval parameters (see Section 2), equation (16) takes the follow- 

ing form 

    1
T Ta M WM M W b


  (20) 

where unknown interval vector a  and vector b  (from now unknown function f  is 

treated as temperature and denoted T  (as a particular case) are defined as 

 
           
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T

a T x t T x t T x t T x t T x t T x t

T x t T x t T x t

 


 (21) 

and 

         1 1 1 2
1 2, , , , , , ,2 2 , ,

T

npb T x t T x t T x t tQ cT x t t T x t              …   

  (22) 

Furthermore, the IFPM operates as an iterative technique where vector a  due to 

the formula (20) is recalculating over each particle. The implemented algorithm 
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employs a stopping criterion based on a relative error applied to the upper and the 

lower bound of temperature intervals  ,T T T      that have the following structure: 
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 (23) 

where l is iteration counter,   is the maximum relative error. 

It is worth mentioning that if point x belongs to the edge of X and satisfies  

the second of the third type of boundary condition, one extra row must be added  

in matrix (17) and one extra element in vector (19), because we have one equation 

more. For the Neumann boundary condition  ,b

T
q

n


 
   

 where the adiabatic 

condition is its particular case for  0,0 ,bq   we have: 
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And then for the Robin boundary condition (see Eq. (10)), we have: 
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4. Numerical examples 

The study concludes by presenting the obtained results of numerical calculations. 
These results are not only essential for advancing our understanding of thermal 
processes in biological tissues, but they also have practical implications in the field 
of laser applications. By comparing interval results (see Fig. 1) with single-valued 
ones, the research contributes to the ongoing evaluation and refinement of the pro-
posed computational technic. The single-valued results are always in the range of 
the temperature intervals as they are presented. 
 

 
Fig. 1. Courses of temperature intervals (black line) in three different points of the domain 

for x = 0, 2.1, 4.2 mm for u = 5 % comparing to the single-valued results (red line) 
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In this example of numerical computations, the simulation of interval laser  

irradiation was analysed. Irradiation consisted of consecutive heating and cooling 
periods that last 10 seconds each. The single-valued thermo-optical parameters of 

tissue that have been assumed are gathered in Table 1, whereas Arrhenius injury  
integral parameters in Table 2 and the coefficients appearing in the w function (8) 
in Table 2. In the tissue region, of the depth of L = 35 mm, described in detail in [16], 

the distribution of points is considered as a regular structure and has been generated 

with the step x = 0.35 mm, time step t is set to 0.1 s, radius that determine neigh-

bour points in the FPM h = 2.5x and parameter = 7 in (13). 

Table 1. Thermo-optical parameters [16] 

Symbol Parameter Value Unit 

 Thermal conductivity of tissue 0.609 W m–1 K–1 

c Volumetric specific heat of tissue 4.18 MJ m–3 K–1 

GB0 Initial blood perfusion coefficient 0.00125 s–1 

a Absorption coefficient of tissue 40 m–1 

s nat  Effective scattering coefficient of native tissue 1000 m–1 

s den  Effective scattering coefficient of destructed tissue 4000 m–1 

Qmet Metabolic heat source 245 W m–3 

cB Volumetric specific heat of blood 3.9962 MJ m–3 K–1 

TB Arterial blood temperature 37 °C 

Table 2. The coefficients of the perfusion coefficient function [4] 

 m1 m2 m3 

  = 0 1 0 0 

0 <    0.1 1 25 –260 

0.1 <    1 1 –1 0 

  > 1 0 0 0 

Table 3. Arrhenius injury integral parameters [16] 

Symbol Parameter Value Unit 

A Pre-exponential factor 3.1·1098 s–1 

E Activation energy 6.27·105 J mole–1 

R Universal gas constant 8.314 J mole–1 K–1 
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The analysed model is supplemented by the boundary condition of the third type 

on tissue surface subjected to laser irradiation, while on the internal tissue surface 

the adiabatic condition is assumed. For the boundary condition of the third type, 

the following input data have been introduced:  = 8 W m–2 K–1 (the convective 

heat transfer coefficient) and Tamb = 20 °C (the temperature of surrounding). The in-

itial distribution of temperature has been assumed as a constant value T0 = 37 °C. 

The peak power laser intensity is considered as I0 = 30 kW m–2. Calculations were 

performed in three different points of the depth 0, 2.1, 4.2 mm with the stopping 

criterion (23) for   – Input parameters like: initial blood perfusion coefficient, 

absorption coefficient of tissue, effective scattering coefficient of native tissue,  

effective scattering coefficient of destructed tissue, metabolic heat source and peak 

power intensity were treated as directed intervals.  

Those parameters of tissue, which were assumed as the directed interval numbers, 

are in the following form 

  , %, %p p p p p u p p u          (28) 

where p denotes parameter and u defines the width of the interval [7]. 

In the calculations, u is assumed to be 2.5 % or 5 %. Results for both values are 

compared in Figure 2. As it can be observed, temperature intervals are wider for 

wider intervals of the input parameters.  

Moreover, calculations for other interval parameters like the injury integral,  

the laser heat source and the effective scattering coefficient were done (Figs. 3-5).  

 

 

Fig. 2. Courses of temperature intervals in three different points of the domain for  

x = 0, 2.1, 4.2 mm for u = 2.5 % (dashed line) and u = 5 % (solid line) 
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Fig. 3. Courses of the interval injury integral in three different points of the domain  

for x = 0, 2.1, 4.2 mm for u = 5 % 

 

Fig. 4. Course of the interval laser heat source in three different points of the domain  

for x = 0, 2.1, 4.2 mm for u = 5 % 

By analysing the graph with courses of interval temperatures for two different 
values of u (Fig. 2), we can observe that in three pick points for x = 0, which can be 

important from a practical point of view, were obtained following interval tempera-
tures (in °C): [58.5, 62.9], [82.5, 86.5], [96.2, 92.2] for u = 2.5% and [56.9, 65.5], 
[79.8, 88.2], [89.9, 98.3] for u = 5%. This gives a temperature range of widths  

successively: 4.4, 4, 4 °C and 8.6, 8.4, 8.4 °C.  
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Fig. 5. Courses of the interval effective scattering coefficient in three different points of 

the domain for x = 0, 2.1, 4.2 mm for u = 5 % 

From Figure 3 (u = 5 %) can be observed when the injury integral achieves value 1, 

which means complete tissue necrosis, and it is between 9 and 22 seconds. The same 

time moments can be observed in Figure 5, when the effective scattering coeffi-

cient started to be a constant value.  

5. Conclusions 

This paper explores how the IFPM can be effectively applied to the transient  

bioheat transfer problems with uncertain parameters. Analysed numerical method 

is appropriate for solving complex problems related to temperature and necrosis 

dependent parameters. This makes it a good option for modeling the dynamic thermal 

processes within biological tissue when subjected to laser irradiation, particularly 

when dealing with more intricate mathematical models. Another benefit of this  

approach is its straightforward application of boundary conditions, which opens  

up the potential for using it in scenarios involving multi-layered domains or 3D 

problems. The validity of the IFPM method was performed, as could be observed 

in Figure 1, where comparison with the classical FPM is presented. 
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