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Abstract. For the Burke-Shaw system, we propose a fractal-fractional order in the sense of
the Caputo-Fabrizio derivative. The proposed system is solved by utilizing the fractal-frac-
tional derivative operator with an exponential decay kernel. Time-fractional Caputo-Fabrizio
fractal fractional derivatives are applied to the Burke-Shaw-type nonlinear chaotic systems.
Based on fixed point theory, it has been demonstrated that a fractal-fractional-order model
under the Caputo-Fabrizio operator exists and is unique. Using a numerical power series
method, we solve the fractional Burke-Shaw model. Using Newton’s interpolation polyno-
mial, we solve the equation numerically by implementing a novel numerical scheme based
on an efficient polynomial.
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1. Introduction

In physics and engineering, chaos is one of the most significant findings. A non-
linear dynamic system is said to be chaotic if the future of that system’s development
in time and space is extremely unpredictable as a consequence of its sensitivity to per-
turbations in its unexcited state (starting circumstances) or algebraic structure. There
is a broad range of applications in the fields of modeling, control, and performance
improvement of engineering systems. This is thanks to a deeper comprehension of
chaotic dynamics, which is present in both natural and man-made systems. A number
of dynamical systems with fractional order have been studied, including the Lorenz
systems [[1,2]], the Chua system [3H6], the Rossler system [[7-9]], the Newton-Leipnik
system [[10,|11]], the Liu system [12-14], the Lu system [[15]], the Lin system [16]],
the Chen system [17H19]] are all uncontrollable. The Burke and Shaw, in their article
[20] modified the Lorenz’s system in a variety of ways. Under the transformation
[21]], the Burke-Shaw can be described as a topologically equivalent representation
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of Lorenz. Despite having a similar algebraic structure to the Lorenz system, it is
also topologically equivalent to a generalized Lorenz-type system. The Burke-Shaw
chaotic attractor can be classified as a system of the 3rd degree based on the equation
in (1). In spite of its algebraic similarity to the Lorenz system, the Burke-Shaw system
differs from the generalized Lorenz-type system from a topological perspective:

T — V(i(s) +e(v),
B Vih(e) - e(). m
‘”‘d(? _ Vi(t)g(t) +d,

where f, g and h are the state variables, V and d are constant parameters.

In recent years, there has been an emerging fractal-fractional idea where the
operator has two orders, fractional and fractal, see [22-33]]. Based on fractal-fractional
derivatives and integrals, Atangana and Qureshi studied and predicted the chaotic
behavior of some attractors [23]. Due to the high non-linearity of our problem,
we used a suitable numerical scheme to solve this system of equations numerically.
The Caputo-Fabrizio fractal fractional derivatives have a non-singular kernel which
describes various processes accurately. The implicit solutions to the problem are
obtained, and the solutions under different fractional orders are compared intuitively
through images. By comparing the results obtained in this paper with those produced
under Caputo fractional derivatives, it is found that the solutions change relatively
gently under Caputo-Fabrizio fractal fractional derivatives.

The novelty of this paper lies in the fact that the Caputo-Fabrizio fractional deriva-
tives have a non-singular kernel which describes various processes in the most accu-
rate way. The implicit solutions to the problem are obtained, and the solutions under
different fractional orders are compared intuitively through images. By comparing
the results obtained in this paper with those produced under Caputo fractional deriva-
tives, it is found that the solutions change relatively gently under Caputo-Fabrizio
fractional derivatives. A significant part of the modeling process is selecting the
appropriate fractional derivatives and fractal order. Additionally, the differential
equation calculation under the Caputo-Fabrizio derivative is relatively simple and
convenient, which is not the case with other fractional derivatives. A novel numerical
scheme based on an efficient polynomial is used to solve the Burke-Shaw model
numerically using Newton’s interpolation polynomial. Moreover, with a numerical
power series method, we solve the fractional Burke-Shaw model. Many applications
in chaotic systems have been studied in various fields such as encryption, finan-
cial models, wind turbines, photo-thermal interactions, thermoelasticity of type III,
Thin Slim Strip Non-Gaussian Laser Beam, and the magneto-thermo-viscoelastic
medium [34-40].

The remainder of the paper is organized as follows: Section 2, following the intro-
duction, provides some definitions required for the formulation of a fractal-fractional
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order Burke-Shaw model. Section 3 examines the existence and uniqueness of the
proposed model. In Section 4, a numerical scheme is applied to solve the developed
model, and numerical simulations are conducted to validate the analytical findings.
The power series method used to solve the proposed model is discussed in Section 5.
Moreover, this section summarizes all of the major findings of the current study and
discusses the behavior of the obtained solutions.

2. Model formulation

Definition 1. [41,42] In the Liouville-Caputo sense, the Caputo-Fabrizio fractal-
-fractional derivative of f(t) with order p — o is:

FFE@GP{f( t)} = IZECZ/Otexp <—lfc(t—.u)> (dupf( )>

where 6 > 0,0 <m,m € Nand Z(0) =Z(1) = 1. O

Definition 2. [41,42] According to Caputo-Fabrizio, f(t) in order ¢ has the follow-
ing fractal-fractional integral:

p(1—o)e!
Z(o)

In fractal-fractional terms, we can obtain the Burke-Shaw model as follows:
FEDod f(t) = — V(f(t) +2(¢)),
FEIoY g(t) = — Vi(t)h(t) — g(t), 2)
Do h(t) = VI(t) g(t) +d.

L)) = s [ He - /(e)

3. Existence and uniqueness

Existence of the solution of the system (2) and its uniqueness will be provided
here. The functions f(t), g(t), and h(t) are assumed to be bounded for all t € [0, 7],
such that || ]l < My, || gl < Mg, ||| < Mp. Model (1) rewritten as follows:

fe(t,f,8,h) = = V(f(t) +2(t)),
fy(t,f,g,h) = = VI(t)h(t ) g(t),
fz(t,f,g,h) = VI(t) g(¢) +

Bounded variables x,g,z also imply bound variables fy,fy, and f,. In the case of
bounded x, y, and z, M, Mg, and M, exist such that

sup |£(t)] = [[f[l= <My, sup [g(t)] = [[g]le <Mg, sup [h(t)| =[[h[w < M.
teDy teD,

teD,
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The linear growth property is first demonstrated for the functions.

Ife(t,f,g,h)| < V(sup [f]+ sup [g]) S V([|f]lw +[[g]l=) < V(Mi+Mg) = My, < oo,

teDy teD,
£y (. f g, )!<|V!sup\f|sup\h|+sup|g!<V||f|| [Tl + [ glle < Mg, <o,
teDy teD,

Iz (¢, f,g,h)[ < [V]sup [f| Suplg\+d<VHfH [glle+d <VMiMg + d = Mg, <oo.

teDy  teDy

But on the other hand, we have that

|ff(taf1>gvh)_ff(tvfzag’h” < |V‘|f1_f2|’
‘fy (tvaglvh)_f (t f gzvh)| < |g1 _22’a
£z (t,f,g,h1) — 2 (t,f,g,h)[ = 0 < [hy —hy.

fy, fy, £, verify the Lipschitz condition; however, there is a contraction if V < 1.
The linear growth and Lipschitz conditions of ft, fy, and f, will be verified:

2
(e g h)* < 3V2E+3g < Ke(1+[£]7), K= 5 < 1,
g
2 1
’fy(tvfagah)l S3V2M%Mﬁ+3|g|2SKy(1+’g|2)aKy:V2M2M2?
f *"h

If2(t,f,g,h)|> <3V £ g +3d% <3VIMIMZ +3d” < 3K, K, = 3V2 M} M2

_ _ 3
If; (t,f1,,h) — fr (£, F2, 8, h)|* < K| —f2]*, with Ky = 5\/2,
2 _ 3
‘fy(t,f,gl,h)—fy(t,f,gz,h)| SKy,gl_g2’ WlthK _5
_ 3
If, (t,f,g,h) — £, (t,f,g,h)[* < K. |h; —hy|, wuhK_5

Thus, the presented model possesses an existence and uniqueness solution.

4. Power series method

During this section, we apply the power series method to the system (2). Using

power series solutions: f = Z a,t"’, g= Z b,t"°, h= Z ¢, t"°. The recurrence
. n=0 n=0 n=0
relations:
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p((n+1)o)+1 %
w0 = (g, — bica ik, ao =3,
An+1 p(no +1) a(g, )+1§6 (Cn—k; 40

p((n+1)c)+1 "
bpy1——————=(c—a)f,+cg,— n—k, bo=2,
W ety = et eg,~ Yau i, bo

No 1 n—k

CnJrlM —bh, +€Zb£bn ks co=1.

p(no+1)
Then, we introduce the solution in the equation:

f=3—-38.3177t"% +731.795t19 — 5700.48t>%* 4+ 28380.5t>°2 — 41294.6t*°
— 340243388 1285037 x 1006686 — 3.41899 % 10° x 107t7-3* — 1.44472 x 103332,
g =2-3.02508t"® +-314.812t"%° — 3038.56t>* +24431.5t>9? — 113236t*°
4452133788 —1.70875 x 105t%86 +7.17208 x 105473 4+ 1.79 x 107¢%82,
h=1+7.05853t"%® —36.8231t1% + 1381.63t>* — 12835.1t>9% + 149232¢*°
—1.45784 x 105688 4 1.34055 x 10758 — 1.00228 x 10873 +6.30178 x 103582,

5. Schemas for the fractal-fractional Burke-Shaw model

5.1. Constant order with exponential decay

The purpose of this section is to search numerical solutions to Burke-Shaw models
that include Caputo-Fabrizio fractal-fractional operators. We can write system (2) as:

FFEA@c’pf( t) =o(f,gh,t),
FEgeP 8(t) = w(f,g,h,t),
FFE@ ph( t) = u(f g h,t),

and we can reformulate the above equation as follows

F 5. 1(t) = pt? L o(f,g,h,t),
F g9, a(t) = ptP y(f g, ht), 3)
CF@Ot () ptp ! (f g7h7t)'

If we define as U(f,g,h,t) = ptP lo(f,g,h,t), V(f,g,h,t) = pr" y(f g h,t),
W(f,g,h,t) = prP ' u(f,g,h,t) and integrate the Eq. (4), we can get the following
equalities

f(t) = £(0) + lz(_(;;u(f,g,h,t) +-2 /t U(f,g,h, 7)dT

g(t):g(O)—l—lZ(_(;;V(f g.ht)+ /V f,g,h,7)d
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h@):hm%+;@g

We can have the following equalities at point f = t,,y1,

o !
W(f.g.h,t —i——/Wf, h, 7)d.
(f,g,h,t) 700) o (f,g,h,7)

l1-0o
f(tyr1) = 1(2,) + U (f",g",h" t,) +

Z(o)

Int1
/ U(f,g,h,7)d

Z(o)
l-o no n n Y fnt1
Bltn) = 8(0) + oSV (L) 4 o [T V(g b v
-0 n o Tnt1
h(¢n+1):h(fn)+mw(f g0 ) + / W(f,g,h,7)d7,
and at point ¢t = ¢,
l-0 o In
f(t,) = f(t,— Ut gt ht g, —/Uf h,7)d
(n) (n l)+Z(6) ( g ) 7”1)+ZG).O (7g7 71‘-) T,
(t,) = g(t )Jrlf—av(f’H =l gty )+L tV(f h,7)dt
g(ly) = 8lIn—1 Z(G) g ) sln—1 Z(G) 0 , &, 1, )
h(ty) = h(te_) + 1=oy, (gL ) + G/IHW(f,g,hﬁ)d’ﬁ
Z(o) Z(o) Jo

If we take the difference of above equations, we can write in the form of

_ ‘.
£(t,) = f(t,_1) + IZ(G(;U (g ) + Z(Ga) ; | B U(f,g,h,1)dr,
e(tn) = glta1) + -2V (e ) = ) o V(f,g.h,7)dr,
Z(o) Z(o) = )i,
l1-0

h(ty) = h(ty_1) +

n Ir1
W (e g ) e / W (f,g,h, T)dT.
Z(G) ( 8 ) yin 1)+Z(G)r:22 ) ( )&, 77) T

We shall apply the Newton polynomial and we obtain the following equalities

-0
f(tn-H) = f(tn) +

el (U (" g" 0" t,) —U (g 0, ) U (F2, 2 0 2 00)

U(F g ) U (g )

noor At (T_tr72)+
r+1
+% Z/t + U(f’,g’,hr,tr) —_2U (frfl’gr—17hr71’tr71) +U (fr727gr—2,hr72’tr72) dt
r=2n 2(Ar?
X (T—l‘rfz) (T—l‘rfl)

)

g(tas1) = g(t) + ;76 [V (", g" 0" ) =V (£ g )]V (2, g2 2 0)

V(I ) V(g A )

(T—tr—2)+
o v [ 1 At 1 2 2
+ 5= Z / Vv (fragr7hratr) -2V (fr_ agrilahr_ 7tr71) +V (fr_ agrizahr_ 7tr72) dT,
2% 2(Ar)?
X (’L’ —tr_z) (T—lr_l)
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h(tn-H) = h(tn) + Lo

Wx) [W (fnagn7hnatn) -w (fn717g”717hn717t}1—1)] w (fr727gr727hr727tr—2)

W (g ) =W (g2 h )

(T—t,-2)+

noort, At
n L Z/ +1 % (fr,gr7hr,lr) —_2W (f*17gr71 71.1/7171}_1) +W (fr727g727hr727[r_2) dr.
Z(G) r=2 2(A)2

X (T—tr_2) (T—1tr21)
Then, the numerical solution of the Burke-Shaw attractor with Caputo-Fabrizio deriva-
tive is given by

l—-0o _
fn+l—un+l)(())[ l(pn_tp 1 Pn— 1]
+£i - 5(p A — (p At 1P~ 1—3(pAt
Z(G) = r 2 12 r—2 3 r—1 r
p(l—G) p—1 P
81 =Vnt 7(0) Iy Wn—1, 1‘l’n 1
op v |p13 1
— A 1A P "y A
+Z(G),Zz[tr2 12‘;’ oAt — ll/ 1AL 41 l// t]
1—-0 _ _
hy1 = Wn+p(Z(G)) [1‘5 l.un_t,ffllﬂn—l}
op v |- 12
+ZG)r_Zz|:r ) 12;1, WAt — ﬂr— At+lp urAt}

5.2. Variable order with exponential decay

Suppose f(t) is a difractal-fractionalerential function with order ¢ and fractal
variable dimension p(t), then a fractional derivative of f(t) is given by ¢ and p(t)
with order ©.

FFE@(?’;P(t)f(t) _Z(o) d /t u(v)exp <— - fc(t - v)) dv,

1—0dtP®) Jo

dp(v) _ .. Pt)—p(V)
dtP®)  tovgpt) —yp(v)’
on the exponential decay kernel, the following definition is provided:

FFE[OP(Y) (1) — 2(66) /0 “u(w) [p/(v)ln(v) + p(vv)] vP Mgy

IZ(_G‘;tPW [p/(t)ln(t) + pit)] f(t).

For the purpose of determining the numerical scheme, the following new class of
Cauchy problems is considered:

where In order to define a new fractional integral based

FEE P (1) = (e, f(t)),  £(0) = fo.
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By rewriting the equation above with an exponential decay kernel, we get the new
fractional integral

/hvu [ /(v)In (v)+p(v)]vp(v>dv

lz@ 2 [prte)nce) + 2| g0,

The following is the result when t,; = (k+ 1)At

u(tier) = o ) /OWH h(v,u(v)) [P/(V)ln(\/) + p(vv)] vP ) gy

Z(o)
1-0_p() [P(WH)_I)(W) lntg+p(w)} h(tg,fe).

—
+ Z(o) ! At ty

In order to keep things simple, we can take the following approach:

gV, u(v)) =h(v,u(v)) [p/(v)ln(v) + p(vv)] vP ),

As a result, at ty.; = (k+ 1)At and t, = kAt, and taking fractal-fractional of
equations,

u(topr) =u(ty) — Z(o) pLr )lnt/ 1+p$i—11)]
(t; N ‘) Zc)/OtMg v,u(v))dv
e T—
()4 [ t“‘ p () 1nt4+p$€)]h(u,ff)
+Z(Go)/t:(+|g v,u(v))dv

4

Using Eq. (4), one can rephrase the above equation as follows:

-0 t))—p (to t
Uiy :“(f—mtgpﬁ[’l) [P( 0) Af( ¢ ])lnté‘1+l)*(c[i]1)} Xh(tg_l,fi'_l)

L7A8 ( (—1
o [ )y B
P (e [P p(
(

0[P (ter) —p (te) p(te) y
v I+ 5 h(tg,f).

"z o)
+1 o
Z(c) !
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The above equation can be organized as follows:

1 =0 pern) [P(W)—P(‘Gm)lntz +p(t“)] Xh<t£717fu>

Ml =T 7 gy e At T
te,f) [t to_p, f71) e
o g(ts, )/m (v—tey)dv— o g(te, )/m (v tg)dv
Z(G) At ty Z(G) At ty
1—0 @ [P (ter1) —p(tr) p (te) .
o) v In + 25 h(tg,f )
%)
As aresult of (5), we have
B At)? t At)?
[ werenav =200 =B
ty 2 ty 2

Our approximation for the Eq. (5) can be obtained as follows:

o 1=0 pey [P(t) —p(tr) p(te1) 1
Upr1 = Uy T(G)tz_l |: At lntg,1+7t£_l h(tgfl,f )

o7 () 5~ g (™) 3

1—0 pn [P (ter1) —p(te) p (tr) ¢
TC )t [ = In + = h(tg,f).
Thus
o l-o P(tz 1) p(te) —p(ti1) p(te-1) £—1
Upr] = Uy Z(G)t At lntg_l—{—itg_l Xh(tg_l,f )
+7t(; t"“ )lntg—{—pitf)] xh(tg,fg%
14
OP . peii) p( ) p(tefl) p(te-1) 1) At
_ 1 - N 7 B f _
Z(o )te 1 [ nty_1+ o1 h(w 15 > >
1-0 p) P(tm)—P(tz) p (te) (
+ 2oy v In + £ h(tg,f).

5.3. Numerical simulation
The system behaves chaotically when parameters are V = 10, d = 13 or 4.272.
The initial conditions are as follows: f(0) = 0.1, g(0) = 0.1, h(0) =0.1.

Example 1
FE g f(6) = —10(f(t) + g(t)),
e g g(6) = ~10£()h(t) — g(t), ©)
FE 0 PP h(t) = 10f(t)

aQ

—~
ct

~—
+
—_
|8
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Fig. 1. Simulation of the fractal-fractional Burke-Shaw system (7) withoc =1,p =1

Fig. 2. Simulation of the control fractal-fractional Burke-Shaw system (§) withc =1,p =1

Fig. 3. Simulation of the fractal-fractional Burke-Shaw system (7) witho =1,p =1

rrrrr

Fig. 4. Simulation of the control fractal-fractional Burke-Shaw system (8) witho =1, p =1
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rrrr

Fig. 5. Simulation of the fractal-fractional Burke-Shaw system (7) with 6 = 1, p = 1 /(1 +exp(—t))

SNIZADS

Fig. 6. Simulation of the control fractal-fractional Burke-Shaw system (8) with ¢ =1,
p=1/(1+exp(=1))

‘‘‘‘‘‘

’f

Fig. 7. Simulation of the fractal-fractional Burke-Shaw system (7) with 6 = 1, p = tanh(1 +1)

rrrr

Fig. 8. Simulation of the control fractal-fractional Burke-Shaw system (8) with ¢ = 1, p = ranh(1 +1)
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Figures 1, 3, 5 and 7 show numerical simulations of a fractal-fractional order Burke-
-Shaw system (7) in the sense of the Caputo-Fabrizio derivative for 6 = 1,p =1,
c=1,p=097,06=1,p=1/(1+exp(—t)), c =1,p =tanh(1 +1t), respectively.

Example 2
FFEGT LV f(6) = —10(£(t) + (%)),
EG ™ g(t) = —10f(8)h(t) - g(t), ®)
FFEge PP h(t) = 10£(t) g(t) + 13— 5(g(t) +h(t)).

Figures 2, 4, 6 and 8 show numerical simulations of a fractal-fractional order Burke-
-Shaw system (8) in the sense of the Caputo-Fabrizio derivative for c =1, p =1,
c=1,p=097,6=1,p=1/(1+exp(—t)), c =1, p =tanh(1 +1), respectively.

6. Conclusions

The numerical solution of the fractal-fractional Burke-Shaw model with an ex-
ponential decay kernel is a major area of research in applied mathematics. Various
numerical methods can be employed to solve this complex model, including the
finite fractal-fractional method, the finite element method, the spectral method, and
others. The choice of method depends on the specific requirements and characteris-
tics of the problem. It is crucial to select an appropriate method to obtain accurate
and reliable results. Solutions are obtained for the Burke-Shaw model using a fractal-
-fractional operator with an exponential decay kernel. Uniqueness and boundedness
for solutions are proved through fixed point theory [43]].
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