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Abstract. A mathematical model is developed to study the characteristics of blood flowing
through an arterial segment in the presence of a single and a couple of stenoses. The gov-
erning equations accompanied by an appropriate choice of initial and boundary conditions
are solved numerically by Taylor Galerkin’s time-stepping equation, and the numerical
stability is checked. The pressure, velocity, and stream functions have been solved by
Cholesky’s method. Furthermore, an in-depth study of the flow pattern reveals the separation
of Reynolds number for the 30 and 50% blockage of single stenosis and 30% blockage of
multi-stenosis. The present results predict the excess pressure drop across the stenosis site
than it does for the inlet of the artery with single and multiple stenosis and the increase in the
velocity is observed at the center of the artery.
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1. Introduction

Atherosclerosis is currently the primary health concern that contributes to the nar-
rowing of the artery lumen in emerging and impoverished nations. Consequently,
the establishment of stenosis, which is abnormal growth due to cholesterol and fats,
disrupts the normal flow of blood. This causes hypertension, stroke, and some car-
diovascular diseases, which are the major causes of death, particularly in emerging
countries. Thus, it is very important to study the different factors such as pressure
drop, velocity, wall shear stress, etc. for the natural movement of blood and behavior
of stenosed arteries and the advance of the pathological condition [1]. Investigation
of modeling of the blood flow through segments of an artery with multiple stenoses



50 F. Shaikh, A.A. Shaikh, E. Hincal, S. Qureshi

is very arduous nowadays. The main components on which the accuracy of the model
depends are the appropriate numerical scheme, model’s geometry, and boundary
conditions. Research investigators keep their attention on blood flow through arter-
ies with mule stenosis. The behavior of the flow of blood as a nanofluid through
a stenosed artery was studied by Hussain et al. [2]. They used similarity transfor-
mation for the solution of a differential equation. Investigation of blood flow in the
branched artery with the blockage of 20, 50, and 80% was done in [3] and concluded
that in 80% blockage, the shear rate is high in the re-circulation area with an in-
creasing Reynolds number. One-dimensional non-Newtonian fluid in the presence of
multiple stenoses in an artery was investigated [4]. The artery they considered dur-
ing the investigation was about 45 mm in length, 0.45 mm in radius, and 15 mm in
length, and concluded that the ratio of resistance becomes approximately one with
decreasing viscosity and increasing stress. Using an analytical technique, a thorough
single-phase mathematical analysis of blood nanofluid passing through an inclined
stenosed artery in the vicinity of a magnetic field was performed [5]. The findings
showed that a magnetic field decreased the blood nanofluid’s velocity through arter-
ies. With the assistance of the finite difference method, a nonlinear blood flow model
under the influence of periodic body acceleration through several stenosed arteries
was examined [6]. The outcomes demonstrated that the wall shear stress increases as
the Reynolds number increases. The Bernstein polynomial approximation method is
used to investigate the Newtonian gold-blood nanofluid flowing through a stenosed
artery in the presence of a magnetic field and concluded with the findings that as the
particle concentration increases in the presence of the magnetic field, the temperature
and wall shearing stress of the nanofluid increase, whereas the velocity decreases [7].
A theoretical study was conducted on ternary hybrid nanoparticles using homotopy
perturbation methodology in an inclined catheterized artery with multiple stenoses
and wall slip [8].

An axially non-symmetrical stenosed artery with a flexible tube, and a two-layer
model of blood, was under study [9]. Srivastava proposed the size of the tube must not
be more than 50% of the artery. An investigation was done on the irregular stenosis
of a 3D computational model using finite element volume [10]. Homotopy perturba-
tion was used to examine the impact of hybrid nanoparticles (Cu–TiO2) on peristaltic
blood flow patterns in a nonuniform cylindrical annulus with wall slip inside an ex-
ternal induced magnetic field [11]. According to Gupta’s findings, the oscillations
in wall shear stresses are stronger in cases of irregular stenosis for Re = 130-540.
Under the influence of a magnetic field tapered artery was under investigation [12].
A homotopy perturbation method was used to examine the effects of a magnetic
field, thermophoresis, and Brownian force on blood nanoparticles in an inclined
coaxial tube [13]. Neetu resulted that stress decreasing very fast downstream and
is very high near the stenosis. Furthermore, the results showed that with an increase
in the Hartmann number, and a decrease in the flow rate. The non-Newtonian Cas-
son blood model in the stenosed artery was investigated [14] with slip condition and
concluded that slip velocity increases, whereas shear stress and yield stress reduce in
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a radial direction. Bioheat transfer in biological tissue and analysis of blood temper-
ature along the artery and vein was taken into account [15]. The Reciprocity Bound-
ary Element Method (MRBEM) and finite difference method were applied for solv-
ing the Pennes equation. Researchers have employed different numerical techniques
for solving the differential models developed from nonlinear fluids. A numerical
scheme using Riemann-Liouville fractional operator, Caputo fractional operators as
well as Atangana-Baleanu-Caputo can also be used to solve the differential equations
obtained from nonlinear fluid models [16–21].

2. Problem formulation

Steady, Newtonian form of the blood with constant density partaking symmetric
stenosis specified at single and multi-position in the segment of an artery are consid-
ered in this paper. Assuming that R(x) is the radius of the stenotic region and R is
the radius of the non-stenotic region. The Navier-Stokes equation governs the fluid
model and is drawn up in the cylindrical coordinate system (r,θ ,x), where (r,θ)
are the coordinates in the radial and circumferential direction, and the x-axis repre-
sents the coordinate along the axis of an artery as illustrated in Figure 1. The flow is
induced by an axial pressure gradient by neglecting the gravitational effects.

Fig. 1. A graphical illustration of the physical model

3. Governing equations

Governing equations govern the Newtonian fluid flow, and are described as conti-
nuity equation and momentum equation and are depicted as follows:

∇.u = 0, (1)

ρ

(
∂u
∂ t

+u.∇u
)
=−∇P+ρ.F +∇.τ, (2)

where velocity is u, density of the fluid is ρ , P is the pressure, and F is the body
force. Stress tensor τ for Newtonian fluid, is stated as τ = 2µ1D, where D is the rate
of deformation tensor and velocity gradient L, is defined as:
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D =
L+Lt

2
, where Lt = ∇u. (3)

Describing the non-dimensional variables for velocity, distance, and shear stress
respectively as,

u∗ =
u
U
, x∗ =

x
L
, P∗ =

L
µ0U

P, τ
∗ =

L
µ0U

τ, and µ
∗ =

µ1

µ0
. (4)

Discarding the ‘*’ notation, equations (1) and (2) can be rewritten as (5) and (6)
shown below:

2Re
∆t

(un+1 −un) = (∇.(2µD)−Reu.∇u)n −∇pn+1, (5)

∇.un+1 = 0. (6)

where Re is the non-dimensional number known as the Reynolds number which
portrays the behavior of blood and is defined as:

Re =
ρuL

µ
. (7)

4. Numerical simulations

Numerical simulation techniques such as the finite element method (FEM), finite
volume method (FVM), and computational fluid dynamics (CFD) have proven to be
valuable tools in the study of blood flow through the segment of an artery in the
presence of stenosis. These techniques have enabled researchers to model complex
geometries, accurately simulate blood flow parameters, and investigate the effects
of stenosis on blood flow. From a wide range of numerical schemes, Semi-implicit
Taylor-Galerkin/Pressure-correction is used for discretization in this paper. The main
goal of the Taylor-Galerkin scheme is to provide a time-stepping system that is
effective and extremely accurate in capturing both transient and steady-state solu-
tions to fluid flow challenges. The approach was first put forth by Chorin [22], and
it was afterward improved by Fortin and Esselaoui [23]. It splits the pressure fields
and velocity fields. For non-Newtonian fluids, however, the approach has been im-
proved numerically in both semi-implicit and fully-implicit forms. The semi-implicit
technique has shown to be numerically correct and computationally effective for
flows that are diffusion dominant, giving it a reliable option for particular challenges.
The semi-implicit type of the TGCP algorithm is used in the proposed study. Veloc-
ity and pressure regions are calculated then approximately as: u = ∑

i
ui(t)φi(x) and

p = ∑
j

p j(t)ψ j(x).
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Here φi(x) is the parabolic shape function for the velocity and for pressure ψ j(x)
is the linear shape function. The corresponding finite element method, semi-implicit
Taylor-Galerkin/Pressure-correction form of equations may then be articulated in
matrix form as:

Mi j =
∫

Ω

φiφ jdΩ, (8)

N(U)i j =
∫

φiφ jU∇φ jdΩ, (9)

((Lk)i j) =
∫

Ω

ψi
∂φ j

∂xk
dΩ, (10)

Ki j =
∫

Ω

∇ψiψ jdΩ, (11)

Si j =
∫

Ω

∇φiφ jdΩ. (12)

where M, S, N(U), L, K are consistent mass matrix, diffusive matrix, convection ma-
trix, pressure-gradient matrix, and pressure-stiffness matrix, respectively. Choleskey’s
method is then applied to the matrix equation for a solution.

5. Results and discussions

This section concentrates on investigated numerical results. The simulated model
is expounding the results of a symmetric single stenosed segment of an artery for the
blockage of 30 and 50%, and a multi-stenosed segment of an artery blocked 30% in
this piece of work. Results of important parameters such as velocity profiles, contour
plots of pressure profiles, and streamline functions of the blocked artery are trotting
out with different Reynolds numbers (say, Re = 10, Re = 400, and Re = 1000) which
is the important factor of this modeling that highlights the flow rate at inlet, outlet,
and near the stenosis of a blocked artery. Meshes with different blockage percentages
of single and multi-stenosed arteries were generated using IDEAS software, and the
numerical solution is obtained using FORTRAN programming language. The mesh
of the symmetric artery with 30% blockage has 1680 elements and 3523 nodes,
whereas the mesh of 50% blockage has 11277 elements and 5480 nodes and is used
for the investigation of blood flow due to various blockages. Similarly, the mesh of
the multi-symmetric artery with blockage 30% has 8928 elements and 4699 nodes.
The results converge up to the 10−6.

Fully developed velocity vectors for both 30% and 50% blockage in a single sym-
metric stenosed artery are illustrated in Figure 2a-2b, whereas a multi-stenosed artery
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for 30% blockage is depicted in Figure 2c. It can be noticed that the flow is laminar,
the velocity profile is parabolic, and a similar trend is observed at the outlet for both
the cases of single and multi blockage 30% which guarantees the stability of the nu-
merical scheme. Additionally, a parabolic trend of velocity is noticed at the inlet and
outlet for 50% blockage, however, it needs more force to flow near the blockage.

(a) Blockage 30% (b) Blockage 50%

(c) Blockage 30%

Fig. 2. Velocity vectors for single and multi-stenosed artery

Figure 3a-3c illustrates the velocity contours with different Reynolds number sand
such as Re = 10, Re = 400, and Re = 1000 for blockage of 30% respectively, and can
be noticed here that the flow is speedy with increasing Reynolds number. Figure 3a
describes a slight increase in the velocity at the inlet and at the stenosis site and it
decreases as blood passes the stenosis site. Figure 3b-3c demonstrates an increase in
the velocity of the blood at the center of the artery for both Re = 400 and Re = 1000.

(a) Re = 10 (b) Re = 400

(c) Re = 1000

Fig. 3. Velocity contours for 30% blockage

Figure 4a-4c displays the blockage of 50% with various Reynolds numbers re-
spectively. Velocity seems to increase at the stenosis site with an increasing Reynolds
number, and blood is absent near the end of stenosis in all the cases. It can further
be noticed that with an increasing Reynolds number, blood shoots at the stenosis site
with more speed. Comparatively, the blood flow is quick initially at the inlet as well
as at the stenosis site with an increasing Reynolds number for 30% blockage whereas
fluid shoots out with more force at the stenosis region for blockage of 50%, and max-
imum velocity is observed at the center of stenosis. In addition, a slight disturbance,
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and re-circulation are seen at the exit of the stenosis site in 50% blockage, which
causes increases in the stenosis at that region.

(a) Re = 10 (b) Re = 400

(c) Re = 1000

Fig. 4. Velocity contours for 50% blockage

Figure 5a-5c depicted the velocity contours of 30% blockage of the muli-stenosed
artery with various Reynolds numbers i.e. Re = 10, Re = 400, and Re = 1000.

(a) Re = 10 (b) Re = 400

(c) Re = 1000

Fig. 5. Velocity contours for 30% blockage

Figure 5a describes that peak velocity is at the inlet as well as at the center of
each stenosis site and decreases as the blood passes the stenosis site, and a similar
trend is seen for Re = 400 and Re = 1000. However, the flow is speedy and shoots out
with force at the center from the inlet to the outlet in Figure 5b-5c. Furthermore, the
flow seems absent at the upper and lower walls of the artery. A comparative study of
single and multi-stenosis demonstrates that maximum velocity is at the center with
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an increasing Reynolds number for both 30% and 50% blockage. The blood flow is
fast at the stenosis site, and reversal flow is seen right after stenosis in 50% blockage
that causes an increase in the size of the stenosis in a single stenosed artery and more
severe in 30% blockage multi-stenosed artery.

When an artery becomes blocked, the part of the body supplying blood to that
artery will suffer a lack of oxygen, and energy, and die. When the ruptured blood
vessel is inside the brain, it results in a stroke, while it causes a heart attack when it
is inside the heart. Thus, it is very important to study artery pressure distribution.

(a) Re = 10 (b) Re = 400

(c) Re = 1000

Fig. 6. Pressure contours for single stenosis 30% blockage

(a) Re = 10 (b) Re = 400

(c) Re = 1000

Fig. 7. Pressure contours for single stenosis 50% blockage

Pressure contours are depicted in Figure 6a-6c for forenamed Reynolds numbers
for 30% blockage single stenosis. It can be noticed that the high pressure is at the
inlet for a low Reynolds number, and it drops gradually as the blood travels toward
the stenosis and completely vanishes at the outlet. It can further be noted here that for
an increasing Reynolds number, pressure increases with more force, and it suddenly
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drops as the blood reaches the stenosis region. A similar trend is observed for the
aforementioned Reynolds numbers, with blockage of 50%, however, a high force is
required to flow the blood in a narrow region (Fig. 7a-7c).

Figure 8a-8c portrays the pressure contour for the blockage of 30% multi-stenosed
artery. It demonstrates the drop in the pressure gradually when blood is passing the
stenosis region. Moreover, the absence of blood flow at the walls of each stenosis
exit, and the change in the flow rate of blood cause a transition in the pressure and
increase the size of the stenosis.

(a) Re = 10 (b) Re = 400

(c) Re = 1000

Fig. 8. Pressure contours for multi-stenosis 30% blockage

(a) Re = 10 (b) Re = 400

(c) Re = 1000

Fig. 9. Streamline function for 30% blockage for different Reynolds numbers

A streamline is a set of points that are tangent to the instantaneous velocity vector
everywhere. These lines are helpful for observing the separation zone (vortex) formed
inside the artery near the wall. Thus, these separation regions are pathologically sig-
nificant since they prolong the residence time of blood constituents that may cause
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blood clots or thrombosis. Figure 9 renders the view of streamlines of flow in the dif-
ferent locations for three aforementioned Reynolds numbers of 30% blockage. Near
the axis, all streamlines go in a straight line, but as they approach the stenotic artery’s
wall, their trajectory becomes increasingly disordered (Fig. 9a). It is noteworthy here
(Fig. 9b-9c) that while some flow lines pass through the constricted region right after
the mainstream, others are lured to the stenotic wall upstream by the emergence of
circulation zones with increasing Reynolds numbers. Recirculation is severe at the
exit of the stenosis region for the Reynolds number for Re = 1000, and this causes
an increase in the size of the stenosis at that region.

The streamlined distribution for the blockage of 50% is plotted in Figure 10a-
-10c. With increasing Reynolds numbers, flow lines seem smooth along with the flow
field, however, the discontinuity in the flow is observed at the exit of the segment of
an artery for a small Reynolds number. Since the blood is passing through the narrow
space with high force, discontinuity in the streamlines is therefore clear at the stenosis
site with large size vortices at the exit of the stenosis region. The severe disruption
in the streamlines is visible at the entrance of the narrow region, and recirculation of
the flow appears at the exit of the restrained for increasing Reynolds numbers which
is evidence of the harshness of the vortex and the wake enlargement at that region.

(a) Re = 10 (b) Re = 400

(c) Re = 1000

Fig. 10. Streamline function for 50% blockage for different Reynolds numbers

The streamlines simulation of multi-stenosis of blockage 30% is shown in Fig-
ure 11a-11c. It is interesting to observe in Figures that several flow lines are striking
the stenotic wall and then the re-circulation zone forms near the upstream and down-
stream exit of the stenosis site. The severity of the vorticity increases at the exit of
each constraint with an increasing Reynolds number. Comparatively, that prompts
expansion of plaque in a 50% blocked artery is more severe in Reynolds numbers
400 and 1000, as well as in a 30% muti-stenosed artery. Flow turbulence properties
are generated in a narrow artery of 50% blockage with single stenosis rather than
high intensity in a 30% multi-stenosed artery.
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(a) Re = 10 (b) Re = 400

(c) Re = 1000

Fig. 11. Streamline function of multi-stenosis artery for 30% blockage for different Reynolds numbers

6. Conclusion

We investigated the blood flow through the single and multi-stenosed segments
of arteries. Our investigation depicts that flow changes its pattern from laminar to
turbulent in single and multi-stenosed arteries with 30% and 50% blockage. As the
Reynolds number rises, the inlet center velocity increases noticeably. Maximum pres-
sure is likewise seen near the artery’s inlet, and it lowers gradually as blood moves
through the stenosis area. Furthermore, from the above figures, in this paper, a com-
parative study reveals that flow is quite laminar in 30% blockage single stenosis.
However, in 50% blockage, with increasing Reynolds numbers reversal of flow
appears due to a pressure drop that decelerates the flow and re-circulation appears,
causing increases in the length of the vortex at that region. In addition, flow decel-
eration at each stenosis exit with increasing Reynolds numbers also drops pressure
fast and vortex grows with more strength in 30% blockage multi-stenosed artery that
may transform this reversal flow into lumps and this lump may be the cause of further
disease normally called atherosclerosis.
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