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Abstract. The article presents the application of swarming algorithms in heat conduction,
taking into account the continuity of the boundary condition (type IV). The influence of the
input parameters of the bee and ant algorithm and tessellation on the selection of the heat
conduction coefficient between the casting mold and the casting in computer simulations
was presented. The results were compared for two different finite element grids, a different
number of individuals, and a different number of iterations. The study also considered the
magnitude of the reference temperature disturbance as the input temperature for numerical
calculations. The analysis showed that the relative error of reproducing the value of the
thermal conductivity coefficient in the continuity condition did not exceed 1.5% of the
reference value of this coefficient.
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1. Introduction

Artificial Intelligence (AI), with the help of computation, seeks to solve imposed
issues effectively and non-algorithmizable based on modeling knowledge. An exam-
ple of such an issue is image processing, such as face recognition or handwriting.
Human intelligence can be a point of reference here if the issues of artificial intelli-
gence are considered. The essential functions that make up human intelligence are the
processes of learning and the practical use of knowledge, association, generalization,
and cognitive abilities. The most important learning processes include memoriza-
tion, achievement of goals, ability to interact, the definition of conclusions, analytical
fluency, and conceptual and abstract thinking. Intelligent machines created by man
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can be programmed so that the elements mentioned earlier of human intelligence are
imitated only in a narrow range. Many models of such machines are described in the
literature [1–3].

Karaboga et al. [4] proposed a new bee swarm model called the Artificial Bee
Colony algorithm (ABC). It is modeled on the intelligent behavior of honey bees
during their food acquisition. In nature, a swarm of these bees is considered the most
intelligent. This model consists of three main elements: food sources, unemployed
bees, and employed bees. Bees have developed various techniques in searching for
food, such as waggle dance, to improve communication with other bees about the
location of food sources.

A completely different issue is the problem of selecting the shortest route between
two different points in the city at a certain distance. In this case, the implemented Ant
Colony Optimization (ACO) algorithm was used, which takes full advantage of the
computational capabilities of multiprocessor and distributed systems. The experiment
carried out was to demonstrate the superiority of using the algorithm over a system
of traditional navigation [5, 6].

Karaboga in work [7] presents a new approach to solve the inverse heat conduc-
tion problem in estimating an unknown heat source. He formulated the physical heat
transfer problem as an optimization problem. The modified genetic algorithm falls
into the class of heuristic algorithms, which search for possible solutions to find
a solution better than the original one. Such a search is carried out by evolutionary
mechanisms, as well as a natural selection, and was developed to solve the resulting
optimization problem.

Swarm algorithms easily fit the size constraints of the solution space with no de-
pendence on the number of variables. Beni et al. and Hackwood et al., in their works
[8, 9], presented the concept of swarm intelligence. The inspiration for the develop-
ment of these algorithms came from observations of biological systems such as flocks
of birds, swarms of ants, colonies of worms, or just swarms of bees.

In the works of Hetmaniok et al. [10, 11], the procedure for solving the inverse
thermal conductivity problem with a boundary condition of the third kind using
selected swarm intelligence algorithms was realized. The solution to this problem
involved identifying the thermal conductivity parameter and reconstructing the tem-
perature distribution in the area. In the presented articles, the results of minimizing
the functional determined the error of the approximate solution in the issue of heat
conduction. Moreover, the results show that the proposed algorithm is an effective
tool for solving this kind of inverse problem for different cases of the error of the
input data, the distance of the control point from the boundary of the area, and the se-
lection of parameters in algorithms of swarming.

The article presents the application of swarming algorithms in heat conduction
simulations. The finite elements method (FEM) is the most applied method used for
numerical calculation of many phenomena in computer simulations, for example,
in thermomechanics, and many others [12, 13]. Therefore the authors use FEM in
the numerical part of their research. In the next part of this paper, we present the
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influence of the input parameters of the bee and ant algorithms and tessellation on
the reconstruction of the heat conduction coefficient between the casting mold and
the casting in computer simulations. The results were compared for two different
finite element grids, a different number of individuals, and a different number of
iterations [14].

2. The mathematical model

2.1. Heat conduction

During the process of heating and cooling bodies, there is undetermined conduc-
tion of heat as long as the bodies strive to achieve temperature equilibrium with the
environment in which they are located. The thermal exchange between parts of bodies
that are in direct contact with each other is defined as heat conduction. The following
formula defines the mathematical model of heat transfer by conduction:

ρc
∂T
∂ t

+∇ · (−λ∇T ) = Q, (1)

where: ρ – density of the tested material
[

kg
m3

]
, Q – capacity of internal heat sources[

W
m3

]
(in this paper Q = 0 due to lack of such sources), ∇ – differential nabla opera-

tor, T – temperature [K], c – specific heat
[

J
kgK

]
,

∂T
∂ t

denotes the first derivative of

temperature with respect to time.
The issue of transient heat conduction belongs to initial-boundary value problems,

requiring the task of appropriate initial and boundary conditions. Initial conditions,
called Cauchy conditions, give certain body temperature values at the initial moment
t0 = 0 s.

T (r, t)|t=0 = T0(r), (2)

where r is the field vector at a given point. To determine the transient temperature
distribution, the condition given by the formula (2) is necessary [15].

We distinguish four types of boundary conditions associated with complex heat
transfer:

• A boundary condition of the first kind (Dirichlet), at the edge ΓA of the area Ω

temperature is set (Tz)

ΓA : T = Tz. (3)

• The boundary condition of the second kind (von Neumann), at the edge ΓB

of area Ω the heat flux is known (qz)
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ΓB : q = (qz), (4)

• A boundary condition of the third kind (Newton’s or Robin’s), at the edge ΓC

of the area Ω, heat exchange with the environment takes place:

ΓC : q = α(T −Tenv), (5)

where α is the heat transfer exchange with the environment, T is the body
temperature at the edge ΓC and Tenv is the ambient temperature, q denotes
the heat flux entering (T < Tenv) into the area Ω or flowing out (T > Tenv)
from the area Ω.

• The boundary condition of the fourth kind (continuity condition), at the edge
ΓD between areas Ω1 and Ω2, heat flow occurs. Two cases are possible here:

– ideal contact between areas
– lack of ideal contact (coefficient κ is describing heat exchange through

the separation layer)

κ =
λp

δ
, (6)

where λp is the thermal conductivity coefficient of the separation layer of
the protective covering, and δ is the thickness of that layer [16].

2.2. Swarm algorithms

Artificial Bee Colony and Ant Colony Optimization are classified as swarm algo-
rithms. They are metaheuristic algorithms for solving various types of computational
problems. They are used to optimize numerical problems and belong to the class of
herd algorithms.

2.2.1. Bee algorithm

In the ABC algorithm, a colony of artificial bees consists of three groups of bees.
The first half of the colony consists of employed bees and is one of the three groups.
Another half of the colony includes a group of scout bees and a group of unstaffed
bees. The artificial bee colony optimization algorithm assumes that each food source
belongs to only one bee, meaning that the number of employed bees equals the num-
ber of food sources around each hive. Bees whose food source has been exhausted
become unemployed bees. In the ABC algorithm, the position of the food source
represents a possible solution to the optimization problem, and the food source’s nec-
tar content corresponds to the associated solution’s quality (efficiency). At the first
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stage, ABC randomly generates an initial population P, the size of the number of
food sources, solutions SN, where SN denotes the population size and the number
of food source positions. Each solution xi denotes the positions of the food source,
(i = 1,2, ...,SN) is a vector of solutions of size D. In the algorithm, D denotes the
number of optimization parameters. After initialization, determining the coordinates
of the positions of food sources is subjected to multiple cycles C = 1,2, ...,Cmax,
where Cmax is the maximum number of cycles of execution of the algorithm. Cycles
denote the update of the solution. The employed bees update the position (solution)
changes according to local information (visual information) and test the amount of
nectar (fitness value) of the new source (new solution). If the new nectar amount is
higher than the previous cycle, the bee remembers the new position and forgets the
previous one. Otherwise, it keeps the position of the previous one in its memory. Once
the search process is complete, all employed bees share nectar information from dif-
ferent food sources and their position information with bees in the dancing area. The
artificial non-employed bee selects a food source according to the probability value
associated with that food source pi, calculated according to the following formula:

pi =
f iti

∑
SN
n=1 f itn

, i = 1, . . . ,P, (7)

where f iti is the value of the solution’s efficiency i, which is proportional to the
amount of nectar of the food source in the positions i. In this way, the bees that have
worked, exchange their information with the individuals that observe them. In the
next step, the coordinates of the food sources are updated according to the relation:

vi j = xi j +φi j(xi j − xk j), (8)

where vi j is an update of the coordinates of the food sources, k ∈ 1,2, ...,SN and
j ∈ 1,2, ...,D are randomly selected indices, such that k ̸= i and φi j is a random
number from the interval [–1, 1] [17].

2.2.2. Ant algorithm

The ant algorithm is a technique designed mainly for problems of finding the
best paths in a graph. Its inspiration comes from the world of ants, which can find
the shortest route between the anthill and available food. As ants wander toward
food, they choose a route at random, but as they return to the anthill, they leave
a pheromone trail along their route, which, if left on the path, gradually evaporates
if the path is not frequented. On a shorter route, evaporation is slower than on longer
routes, so ants choose this route more readily than other routes. As a more favorable
route is found, subsequent ants choose it by reinforcing the pheromone trail, known
as the positive feedback phenomenon. In the ant algorithm, a colony of artificial in-
dividuals cooperates as they search for optimal solutions to complex combinatorial
problems. There is an indirect interaction between ants and some form of gathering
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experience and using it in further exploration. Over time, the ants collectively develop
a set of shortest paths leading them to their designated goals. It is called collective
intelligence. There are several differences between real and artificial individuals.
The first of these differences is that artificial ants move only within the boundaries set
by the input graph, while real ants can take an arbitrary route. In the case of the ACO
algorithm, the pheromone trace is related to the quality of the solution. It is also worth
raising the question of how artificial ants find the desired solution. In ACO algorithm,
each ant in each circuit finds a specific solution. The result of the entire program is
the solution found by the best ant. If the route found by the artificial individual is
better than the one generated so far, a pheromone trace is updated on the route so that
subsequent ants are more likely to choose certain edges in the graph. The stronger the
trace of the pheromone left, the more likely it is that a second ant will follow the trail
of its predecessor. The factor influencing the strengthening of the pheromone trail is
also the distance from the anthill to the foraging site (the path length in the graph).

All ants’ passage routes occur according to the following rules. First, the nodes
through which the ant k (k = 1, . . . ,M) will pass are determined randomly, where M
is the number of ants. Equation (9) defines the probability pi j of choosing node j for
an ant located in node i:

pk
i j(t) =

[τi j(t)]α [ηi j(t)]β

∑i, j∈Gk τi j(t)]α [ηi j(t)]β
, i = 1, . . . ,D, j = 1, . . . ,R, (9)

where η represents the heuristic function, α , β are constants that determine the rela-
tive influence of pheromone and heuristic values on the ant’s decision, Gk is a possible
path for ant k to realize in the created graph, and D is still number of optimization
parameters, R is a node in the graph. In the optimal layout, the value of this parameter
is set, then the layout’s operation is simulated, and the minimum quality index JE is
determined. Ant k leaves on the path of movement the amount of pheromone equal to
∆τ

k
i j. If the obtained path is better than the previous, this path is remembered in place

of the previous best path of passage. The pheromone array is updated after all ants
have traveled all paths, based on the formula:

τi j(t +1) = (1−ρ)τi j(t)+
M

∑
k=1

∆τ
k
i j(t)+ρ∆τ

best
i j (t), (10)

where ρ is the evaporation coefficient 0 < τ ⩽ 1, and M is the number of ants.
Pheromone pairing is added to the algorithm to avoid unlimited growth of

pheromone traces. In the first cycle for each ant, the nodes on the transition paths
are randomized using the roulette wheel method, in which the probability calculated
from the formula (9) is included. After the first ants’ passage (on the path from the
anthill to the food source), the best quality path index is found. Based on the de-
fined quality index JE , which obtained the highest rating, a modification of the ant’s
passage path is made. For the best transition path, new nodes in each layer are deter-
mined randomly. The nodes in each layer move closer to the path node with the best
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quality index. According to the formula (10), pheromone array is modified in each
cycle of calculation. Finally, it is returned to the calculation of probability considering
the determined pheromone array τ and proceeds to the next calculation cycle.

3. Assumptions for the research

The article deals with a topic that requires combining two separate fields of knowl-
edge: thermomechanics and computer science. The heat conduction equation was
chosen from the scope of the first field, while two artificial intelligence algorithms
modeled by nature were selected from the second field. The physical process of heat
conduction has been analyzed, taking into account the boundary condition of the
fourth kind. The effect of input parameters in swarm algorithms on computer simu-
lations of heat conduction was analyzed to determine the value of the coefficient κ

controlling the boundary condition of the fourth kind. Two nature-inspired algorithms
– bee (ABC) and ant (ACO) – were used for research purposes.

The geometry models and finite element meshes were created in GMSH software.
Numerical calculations were performed using the TalyFEM [18,19] library and algo-
rithms implemented in C++. TalyFEM is a tool that uses the finite element method
to simulate selected physical phenomena containing many data structures from the
PETSc library, including vectors, matrices, or ready-made solvers [18, 19]. The tests
were performed on a computer with the following parameters: an Intel(R) Core(TM)
i5-4590 CPU @ 3.30 GHz, x86 64 architecture, using the Linux operating system in
the Ubuntu distribution. Swarm algorithms were implemented in Python and adapted
to be combined with the program based on the TalyFEM library [20]. The approx-
imate solution error (functional) was determined and minimized using ABC and
ACO’s swarm algorithms. The values of Ti j denoted reference temperatures generated
at a constant reference heat transfer coefficient κ and Ui j denoted the temperatures
obtained during the simulation.

The research was conducted with two different finite element mesh densities,
each for the same geometry model. Simulations were performed for one parame-
ter κ , which means selecting a heat transfer coefficient from one range of values
(900-1500 W/m2K). Reference temperatures Ti j were obtained for the coefficient
κ = 1000 W/m2K.

All simulations were performed for the alloy Al-2%Cu. The material properties
are shown in Table 1. The initial temperatures were respectively T0 = 960 K for the
casting and T0 = 590 K for the casting mould.
The presented results refer to the separation layer between the casting and the cast-
ing mold for different densities of finite element meshes (Fig. 1). The nodes at the
interface between the casting and the casting mold have the exact spatial coordinates,
which facilitated the implementation of the IV-type boundary condition in the heat
conduction model.
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Table 1. Material properties

Cast Mold
ρ [kg/m3] 2824 7500
c [J/kgK] 1077 620

λ [W/mK] 262 40

a) b) c)
Fig. 1. Considered geometry (a) and finite element mesh with 58 nodes (b) and with 214 nodes (c)

4. Results

For each finite element grid, calculations were carried out for the two algorithms
ABC and ACO, respectively, for populations equal to 5, 10, and 15 individuals and for
4 and 6 iterations. A characteristic feature of heuristic algorithms is that they must be
run more than once to allow the narrowing of the search area and obtain meaningful
computational results. In the article, the algorithms were run three times in each
case. The 0, 1, 2, and 5% disturbance of reference values Ti j were also included
in each case.

Table 2 presented calculations for the ABC and ACO algorithm for five individuals
and a grid of 58 and 214 nodes, respectively.
The presented results show that for the tessellation of 58 nodes, better results are
obtained with the ACO algorithm than with the ABC algorithm. The ACO algorithm
obtained better results for six iterations with a 0 and 1% perturbation of the reference
value of the κ parameter. On the other hand, after increasing the perturbation to 2 and
5%, the ACO algorithm gave better results for a smaller number of iterations.
For a finite element mesh divided into 214 nodes, generally better results are obtained
with the ACO algorithm than with the ABC algorithm. Only for four iterations with
0% disturbance did the ABC algorithm obtain slightly (∼0.1) better values. On the
other hand, for 1 and 2% noise, both algorithms select the value of the parameter
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Table 2. Values of reconstructed coefficient κ for five individuals using ABC and ACO algorithms

Noise Iterations
κ (58 nodes) κ (214 nodes)

ABC ACO ABC ACO
4 1007.672 1003.916 998.471 1002.382

0% 6 989.670 999.289 1003.503 996.786
4 1094.627 1033.638 1016.864 994.710

1% 6 1015.832 1015.431 993.935 999.648
4 1017.098 1001.587 1021.929 1021.929

2% 6 1014.212 1004.120 998.408 1000.635
4 984.643 997.960 994.179 1011.877

5% 6 981.391 997.207 1009.597 1004.469

κ better for six iterations. With 5% perturbation, better results are obtained for four
iterations in the case of the ABC algorithm while ACO algorithm’s results are better
for six iterations.
For a population of 5 individuals, the ACO’s best-obtained values of the κ coefficient
do not differ from the reference value by more than 1.5%.

Table 3 presented calculations for the ABC and ACO algorithm for ten individuals
and a grid of 58 and 214 nodes, respectively.

Table 3. Values of reconstructed coefficient κ for ten individuals using ABC and ACO algorithms

Noise Iterations
κ (58 nodes) κ (214 nodes)

ABC ACO ABC ACO
4 994.009 999.667 1000.672 997.854

0% 6 998.689 1000.064 1012.991 999.806
4 1022.261 1004.166 1008.455 999.952

1% 6 1005.884 1006.869 995.452 996.569
4 1010.312 1006.198 997.072 995.970

2% 6 1015.095 1006.273 996.982 997.946
4 986.919 997.315 1006.995 1004.755

5% 6 982.833 999.695 1019.623 1005.008

For a finite element mesh divided into 58 nodes, the ACO algorithm gives better
results than the ABC algorithm. The best results are six iterations for 0 and 5% dis-
turbance of reference values. In contrast, for 1 and 2% disturbance, the best results
are for four iterations.

For a finite element mesh divided into 214 nodes, the ACO algorithm proved
superior in each case. For 0 and 2% disturbance, the best results were obtained for
six iterations. In contrast, for 1 and 5% disturbances, only four iterations were needed
to obtain the best results.
For a population equal to 10 individuals, the ACO’s best-obtained values of the
κ-coefficient do not differ from the reference value by more than 0.7%.

Table 4 presented calculations for the ABC and ACO algorithm for 15 individuals
and a grid of 58 and 214 nodes, respectively.

The presented results show that for the tessellation of 58 nodes, the best results
were obtained after six iterations. The ACO algorithm gave better results for 0 and
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Table 4. Values of reconstructed coefficient κ for 15 individuals using ABC and ACO algorithms

Noise Iterations
κ (58 nodes) κ (214 nodes)

ABC ACO ABC ACO
4 1001.121 999.722 1002.407 1002.347

0% 6 1001.020 999.826 1000.663 999.779
4 1006.983 1007.422 1003.006 996.522

1% 6 1003.526 1006.332 1002.523 997.667
4 1008.994 1006.571 997.177 998.137

2% 6 1005.470 1006.543 998.252 997.847
4 988.039 988.039 1006.076 1004.856

5% 6 982.115 999.785 1004.163 1005.289

5% disturbances, while the ABC algorithm gave better results for 1 and 2% distur-
bances. However, the differences in the obtained κ values between ABC and ACO
were not significant enough that with equal success, both algorithms can be used for
calculations.

For a finite element mesh divided into 214 nodes for 0 and 1% disturbances,
the best results were obtained after six iterations for the ACO algorithm. Whereas,
for 2 and 5%, disturbances were also obtained after six iterations however for the
ABC algorithm.

For a population equal to 15 individuals, the best κ values obtained by ABC and
ACO do not differ from the reference value by more than 0.6%.

5. Conclusions

The paper analyzed the effect of input parameters on the reconstruction of the
value of heat conduction coefficient κ at the interface between the casting and the
casting mold. A numerical experiment was performed using bee colony (ABC) and
ant colony (ACO) optimization algorithms. The input parameters were different finite
element mesh densities, the number of individuals in the population, the number of
iterations, and different percentage disturbances of temperature reference values.
The research results showed that all input parameters affect the value of the recon-
structed heat conduction coefficient. However, increasing the number of individuals
in both algorithms gives relatively lower solution errors (for 15 individuals, the errors
did not exceed approximately 0.6%). The ACO algorithm gives relatively lower solu-
tion errors for a smaller number of individuals in the population. The authors showed
similar trends during preliminary research presented in the article [21].
It can also be successfully stated that six iterations in the vast majority of computa-
tional cases yield a better result in the reconstruction of the coefficient κ relative to
the reference values. The error of the reconstructed coefficient values almost never
exceeds the magnitude of the size of introduced disturbance.

The research conducted in the article showed that both the ABC and ACO
algorithms are promising tools that can find practical applications in the process of
reproducing casting conditions in computer simulations.
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