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Abstract. In the present paper, we solve the non-linear Benjamin-Bona-Mahony, modified
Camassa-Holm, and Degasperis-Procesi equations using an iterative method introduced
by Daftardar-Gejji and Jafari. Results are compared with those obtained by other iterative
methods such as the Adomian decomposition method and homotopy perturbation method.
It is observed that the proposed method is computationally inexpensive and yields more
accurate solutions than the Adomian decomposition method and the homotopy perturbation
method.
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1. Introduction

Nonlinear partial differential equations are important due to their vital role in the
modeling of natural phenomena. Several analytical and numerical methods such as
Laplace transform, Sumudu transform, Riccati transformation [1], Adomian decom-
position method (ADM) [2], homotopy perturbation method (HPM) [3], homotopy
analysis method [4], Daftardar-Gejji and Jafari method (DGJM) [5], variational
iteration algorithms [6], exponential-expansion algorithm [7], meshless techniques
[8], modified (G′/G)-expansion method [9], generalized Kudryashov technique [10],
sine-Gordon expansion method [11], Lie symmetry method [12], Hirota bilinear
method [13], invariant subspace method [14], Darboux transformation method [15],
rational sine-cosine method [16], spectrum function method [17], residual power se-
ries method [18], generalized Taylor power series method [19] and so on have been
developed in the literature. In spite of so many methods, getting an exact solution
that exists in real-life models is still awaited.
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Each method has its advantages and limitations. Transform methods are suitable
only for linear equations. However, iterative/decomposition methods do not involve
discretization and are free from rounding errors. In particular, the ADM introduced
by G. Adomian is heavily used by researchers as it gives a solution in terms of
a rapidly convergent series. Despite that, computation of the Adomian polynomi-
als is a tedious task. Similarly, in the HPM introduced by Ji-Huan He, the choice of
the small parameter homotopy is an art rather than a solution procedure, and an ap-
propriate choice of such a parameter leads to an inaccurate solution or even a wrong
one. Whereas the main advantage of DGJM introduced by Daftardar-Gejji and Jafari
is that it does not include any such tedious calculations as required in ADM, HPM,
and other decomposition methods. Besides, DGJM is easily implementable using
mathematical software such as Mathematica, Maple, Python, etc. Moreover, DGJM
has been utilized for solving a variety of non-linear equations successfully as well
as for developing several new hybrid methods [20]. For more details of DGJM, we
refer the reader to a review article [21] and references cited therein. In the present
paper, DGJM is used for finding the solutions of the non-linear Benjamin-Mahony
equation [22], modified Camassa-Holm and Degasperis-Procesi equations [23].

The Benjamin-Bona-Mahony equation (BBME) [24] has also been known as the
regularized long-wave equation. This equation was studied by Benjamin, Bona and
Mahony [25] as an improvement of the Korteweg-de Vries equation (KdV equation)
for modelling long surface gravity waves with small amplitude – propagating uni-
directionally in (1+1) dimensions, and the general form of BBME in [26] is given
as

ut −δuxtx +αux +βuux = 0, (1)

where α , β and δ are constants with the nonlinear and dispersion coefficients β ̸= 0
and δ > 0. This equation has been solved by ADM and HPM in [24]. Further, we
consider a family of third-order non-linear dispersive partial differential equations:

ut −uxxt +(b+1)u2ux = buxuxx +uuxxx, (2)

which is called b-equation [27], where b is a positive integer. Equation (2) is called
the modified Camassa-Holm (mCH) equation for b = 2 and the modified Degasperis-
-Procesi (mDP) equation for b = 3. Both equations arise in the modeling of the prop-
agation of shallow water waves over a flat bed [28]. The solitary wave solutions of
(2) are defined as follows [29]

u(x, t) = −2sech2
(

x− t
2

)
, (3)

u(x, t) = −15
8

sech2
(

x
2
− 5t

4

)
. (4)

In this work, we solve BBM (1), mCH, and mDP (2) equations using DGJM and
compare the results with ADM and HPM. The obtained solutions are in agreement
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with exact solutions and more accurate as compared to ADM and HPM. Mathematica
10.0 has been used for plotting the graphs.

The organization of this paper is as follows: In Section 2, we give the basic idea
of the proposed method and also prove its convergence. In Section 3, the proposed
method is applied for getting the numerical solutions of BBME, mCH, and mDP
equations. Further, the obtained results are compared with the HPM and the ADM
solutions. Conclusions are summarized in Section 4.

2. Daftardar-Gejji and Jafari Method (DGJM)

The basic idea of DGJM is described below. We consider the following general
functional equation

u(x, t) = f (x)+N(u(x, t)), (5)

where f is a given function and N a given non-linear operator from a Banach space
B → B. In DGJM a solution u(x, t) of equation (5) is expressed in terms of the
following infinite series:

u(x, t) =
∞

∑
i=0

ui. (6)

The non-linear operator N can be decomposed as

N

(
∞

∑
i=0

ui

)
= N(u0)+

∞

∑
i=1

(
N

(
i

∑
j=0

u j

)
−N

(
i−1

∑
j=0

u j

))
. (7)

Using the above equations (6) and (7), in equation (5)

∞

∑
i=0

ui = f +N(u0)+
∞

∑
i=1

(
N

(
i

∑
j=0

u j

)
−N

(
i−1

∑
j=0

u j

))
. (8)

We define the recurrence relation in the following way:

u0 = f ,

u1 = N(u0),

u2 = N(u0 +u1)−N(u0), (9)

un+1 = N(u0 +u1 + ...+un)−N(u0 +u1 + ...+un−1), n = 1,2, ...

Then,

(u1 +u2 + ...+un+1) = N(u0 +u1 + ...+un), n = 1,2, ... (10)
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and

∞

∑
i=0

ui = f +N

(
∞

∑
j=0

u j

)
. (11)

The m-term approximate solution of equation (5) is given by u(x, t) = u0 +u1 + ...+
um−1. For the convergence of this method, we prove the following theorem.

Theorem 1 Let u(x, t) =
∞

∑
i=0

ui(x, t) be a function of two variables x and t, which is

defined in the Banach space (C[0,1],∥.∥), such that the nonlinear operator N(u) in
(5) is contraction i.e. ∥N(v)−N(w)∥ ≤ λ∥v−w∥, where 0 < λ < 1. Then ∥un+1∥ ≤
λ

n+1∥u0∥,∀n ∈ {0}∪N. 2

Proof: It is clear that u0 = f ,∥u1∥= ∥N(u0)∥ ≤ λ∥u0∥,

∥u2∥= ∥N(u0 +u1)−N(u0)∥ ≤ λ∥u1∥ ≤ λ
2∥u0∥,

∥u3∥= ∥N(u0 +u1 +u2)−N(u0 +u1)∥ ≤ λ∥u2∥ ≤ λ
3∥u0∥,

...

∥un+1∥= ∥N(u0 +u1 + · · ·+un)−N(u0 +u1 + · · ·+un−1)∥ ≤ λ∥un∥
≤ λ

n+1∥u0∥, n = 0,1,2, ..., (12)

which is the required result.
Remark: If u and ū are the exact and perturbed solutions of (5) and e = u− ū denotes
the error. Then in view of (12), we have ∥en+1∥ ≤ λ

n+1∥e0∥. Further as n → ∞,
en+1 → 0, which proves the convergence of DGJM for solving (5). For more details
on the convergence of DGJM, we refer to the reader [30].

3. Applications

In this section, we employ DGJM to find the analytic approximate solutions of
equations (1) and (2). Besides, we compare the DGJM solutions with the existing

results obtained by HPM and ADM. Here onwards we denote It =
∫ t

0
()dt.

3.1. Benjamin-Bona-Mahony Equation

Consider the following simplest form of BBME [25] (for α = β = δ = 1 (1)).

ut −uxtx +ux +uux = 0, (13)

with initial condition

u(x,0) = sech2
( x

4

)
. (14)



Solutions of Benjamin-Bona-Mahony, modified Camassa-Holm and Degasperis-Procesi equations ... 63

Equations (13)-(14) possess the solitary wave solution [31] of the following form

u(x, t) = sech2
( t

3
− x

4

)
. (15)

Integrating the equation (13) with respect to t and using the initial condition (15),
we get

u(x, t) = sech2
( x

4

)
+ It
(

uxtx −ux −uux

)
= f +N(u), (16)

where f = sech2
( x

4

)
and N(u) = It

(
uxtx − ux − uux

)
. In view of the recurrence

relation (9), we get

u0 = f = sech2
( x

4

)
,

u1 = N(u0) = It
(

u0xtx −u0x −u0u0x

)
= t
(

1
2

sech2
[ x

4

]
tanh

[ x
4

]
+

1
2

sech2
[ x

4

]
tanh

[ x
4

])
,

u2 = N(u0 +u1)−N(u0)

u2 =
1

2048
sech11

( x
4

)[
− 1

3
700t3 sinh

( x
4

)
− 20

3
t3 sinh

(
3x
4

)
+

44
3

t3 sinh
(

5x
4

)
+

4
3

t3 sinh
(

7x
4

)
−516t2 cosh

( x
4

)
−90t2 cosh

(
3x
4

)
+74t2 cosh

(
5x
4

)
+19t2 cosh

(
7x
4

)
+ t2 cosh

(
9x
4

)
−70t sinh

( x
4

)
−40t sinh

(
3x
4

)
+80t sinh

(
5x
4

)
+55t sinh

(
7x
4

)
+5t sinh

(
9x
4

)]

− t
(

1
2

tanh
( x

4

)
sech4

( x
4

)
+

1
2

tanh
( x

4

)
sech2

( x
4

))
.

Hence, the three-term solution of (13)-(14) in series form is given by

u(x, t) =
1

2048
sech11

( x
4

)[
− 1

3
700t3 sinh

( x
4

)
− 20

3
t3 sinh

(
3x
4

)
+
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3

t3 sinh
(

5x
4

)
+

4
3

t3 sinh
(

7x
4

)
−516t2 cosh

( x
4

)
−90t2 cosh

(
3x
4

)
+74t2 cosh

(
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4
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+19t2 cosh

(
7x
4

)
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+ t2 cosh
(

9x
4

)
−70t sinh

( x
4

)
−40t sinh

(
3x
4

)
+80t sinh

(
5x
4

)
+55t sinh

(
7x
4

)
+5t sinh

(
9x
4

)]
+ sech2

( x
4

)
.

The exact and three-term DGJM solutions of the BBME (13)-(14) are depicted in
Figures 1-3, where green and purple color represents the exact and DGJM solutions
respectively. Further, for x = 0.03,0.04,0.05 and t = 0.01,0.02, ...,0.05; the three-
term DGJM solutions are compared with four-term ADM and HPM [24] solutions in
Tables 1-3. It is clear that DGJM gives more accurate results as compared to ADM
and HPM.

Table 1. Comparison of absolute errors in the solutions of (13)-(14) (x = 0.03)

t |uExact −uHPM | |uExact −uADM | |uExact −uDGJM |
0.01 2.26646×10−4 2.26646×10−4 4.04367×10−5

0.02 6.03525×10−4 6.03525×10−4 1.08637×10−4

0.03 1.13061×10−3 1.13061×10−3 2.04603×10−4

0.04 1.80786×10−3 1.80786×10−3 3.28339×10−4

0.05 2.63524×10−3 2.63524×10−3 4.79852×10−4

Table 2. Comparison of absolute errors in the solutions of (13)-(14) (x = 0.04)

t |uExact −uHPM | |uExact −uADM | |uExact −uDGJM |
0.01 2.77073×10−4 2.77073×10−4 4.92752×10−5

0.02 7.04304×10−4 7.04304×10−4 1.26302×10−4

0.03 1.28165×10−3 1.28165×10−3 2.31083×10−4

0.04 2.00908×10−3 2.00908×10−3 3.63622×10−4

0.05 2.00908×10−3 2.88653×10−3 5.23925×10−4

Table 3. Comparison of absolute errors in the solutions of (13)-(14) (x = 0.05)

t |uExact −uHPM | |uExact −uADM | |uExact −uDGJM |
0.01 3.27453×10−4 3.27453×10−4 5.81056×10−5

0.02 8.04969×10−4 8.04969×10−4 1.43948×10−4

0.03 1.43250×10−3 1.43250×10−3 2.5753×10−4

0.04 2.20999×10−3 2.20999×10−3 3.98853×10−4

0.05 3.13739×10−3 3.13739×10−3 5.67926×10−4

3.2. Modified Camassa-Holm equation

Consider the following modified Camassa-Holm equation

ut −uxxt +3u2ux = 2uxuxx +uuxxx, (17)
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(a) (b)

Fig. 1. Exact (a) (green) and DGJM (b) (purple) solutions of BBME (13)-(14)

(a) (b)

Fig. 2. Exact and three-term DGJM solutions of (13)-(14) for: a) t = 0.03, b) t = 0.04

(a) (b)

Fig. 3. Exact and three-term DGJM solutions of (13)-(14) for: a) t = 0.05, b) t = 0.06
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along with the initial condition

u(x,0) =−2sech2
( x

2

)
. (18)

Integrating the equation (17) with respect to t and using the initial condition (18),
we get

u(x, t) =−2sech2
( x

2

)
+ It
(

uxxt −3u2ux +2uxuxx +uuxxx

)
= f +N(u), (19)

where f = −2sech2
( x

2

)
and N(u) = It

(
uxxt − 3u2ux + 2uxuxx + uuxxx

)
. In view of

the recurrence relation (9), we get

u0 = f =−2sech2
( x

2

)
,

u1 = N(u0) = It
(

u0xxt −3u2
0u0x +2u0xu0xx +u0u0xxx

)
=−384t sinh6

( x
2

)
csch5(x).

Hence, the two-term DGJM approximate solution of (17)-(18) is

u(x, t) = u0(x, t)+u1(x, t)

= −384t sinh6
( x

2

)
csch5(x)−2sech2

( x
2

)
. (20)

The exact (green color) and DGJM approximate (purple color) solutions of (17)-(18)
are plotted in Figures 4-6. It is noted that DGJM solutions are in good agreement
with the exact solutions. Further, we compare the absolute errors in the solutions of
(17)-(18) obtained by DGJM, ADM [32] and HPM [33] in Table 4. It is observed
that DGJM gives more accurate results as compared to ADM and HPM.

Table 4. Comparison of absolute errors in the solutions of (17)-(18)

(x, t) |uExact −uADM | |uExact −uHPM | |uExact −uDGJM |
−(8,0.05) 2.8077×10−4 2.80771×10−4 1.36329×10−4

−(9,0.05) 1.0363×10−4 1.03633×10−4 5.04471×10−5

−(10,0.05) 3.816×10−5 3.8170×10−5 1.85984×10−5

−(8,0.10) 5.9114×10−4 5.91138×10−4 2.79693×10−4

−(9,0.10) 2.1817×10−4 2.18174×10−4 1.03487×10−4

−(10,0.10) 8.015×10−5 8.0357×10−5 3.81512×10−5

−(8,0.15) 9.3421×10−4 9.34203×10−4 4.30451×10−4

−(9,0.15) 3.4477×10−4 3.44769×10−4 1.59252×10−4

−(10,0.15) 1.2697×10−4 1.26982×10−4 5.87072×10−5

−(8,0.20) 1.31340×10−3 1.313390×10−3 5.88981×10−4

−(9,0.20) 4.8467×10−4 4.84685×10−4 2.17882×10−4

−(10,0.20) 2.2074×10−4 1.78511×10−4 8.0318×10−5
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(a) (b)

Fig. 4. Exact (a) (green) and DGJM (b) (purple) solutions of (17)-(18)

(a) (b)

Fig. 5. Exact and DGJM solutions of (17)-(18) for: a) t = 0.05, b) t = 0.10

(a) (b)

Fig. 6. Exact and DGJM solutions of (17)-(18) for: a) t = 0.15, b) t = 0.20
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3.3. Modified Degasperis-Procesi equation

Consider the following modified Degasperis-Procesi equation

ut −uxxt +4u2ux = 3uxuxx +uuxxx, (21)

with the initial condition

u(x,0) =−15
8

sech2
( x

2

)
. (22)

Equation (21) is equivalent to the following integral equation

u(x, t) = u(x,0)+ It
(

uxxt −4u2ux +3uxuxx +uuxxx

)
= f +N(u), (23)

where f = u(x,0) and N(u) = It
(

uxxt −4u2ux +3uxuxx +uuxxx

)
.

In view of the recurrence relations (9), we get

u0 = f =−15
8

sech2
( x

2

)
,

u1 = N(u0) = It
(

u0xxt −4u2
0u0x +3u0xu0xx +u0u0xxx

)
=−450t sinh6

( x
2

)
csch5(x).

Therefore, the two-term solution of (21) is

u(x, t) = u0 +u1

= −450t sinh6
( x

2

)
csch5(x)− 15

8
sech2

( x
2

)
. (24)

The exact (green color) and two-term DGJM (purple color) solutions of (21)-(22)
are plotted in Figures 7-9. Further, absolute errors obtained by HPM [33], ADM [32]
and DGJM in the solutions of (21)-(22) are compared in Table 5. It is noticed that
DGJM provides more accurate results as compared to ADM and HPM.
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Table 5. Comparison of absolute errors for the equations (21)-(22)

(x, t) |uExact −uADM | |uExact −uHPM | |uExact −uDGJM |
−(8,0.05) 3.3326×10−4 3.33255×10−4 3.33255×10−4

−(9,0.05) 1.2298×10−4 1.23003×10−4 1.23003×10−4

−(10,0.05) 4.521×10−5 4.5305×10−5 4.5305×10−5

−(8,0.10) 7.1089×10−4 7.10978×10−4 7.10978×10−4

−(9,0.10) 2.6231×10−4 2.62396×10−4 2.62396×10−4

−(10,0.10) 9.659×10−5 9.6644×10−5 9.66441×10−5

−(8,0.15) 1.13903×10−3 1.139070×10−3 1.13907×10−3

−(9,0.15) 4.2034×10−4 4.20359×10−4 4.20359×10−4

−(10,0.15) 1.5476×10−4 1.54820×10−4 1.5482×10−4

−(8,0.20) 1.62416×10−3 1.624210×10−3 1.62421×10−3

−(9,0.20) 5.9927×10−4 5.99362×10−4 5.99362×10−4

−(10,0.20) 2.2074×10−4 2.20743×10−4 2.20743×10−5

(a) (b)

Fig. 7. Exact (a) (green) and DGJM (b) (purple) solutions of (21)-(22)

(a) (b)

Fig. 8. Exact and DGJM solutions of (21)-(22) for: a) t = 0.05, b) t = 0.10
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(a) (b)

Fig. 9. Exact and DGJM solutions of (21)-(22) for: a) t = 0.15, b) t = 0.20

4. Conclusion

In this paper, a reliable and efficient method introduced by Daftardar-Gejji and
Jafari has been successfully employed to solve the Benjamin-Bona-Mahony equa-
tion, modified Camassa-Holm, and modified Degasperis-Procesi equations. Further,
the DGJM solutions are compared with ADM and HPM numerically as well as graph-
ically. We observed that DGJM agrees well with exact solutions and provides more
accurate results than ADM and HPM. Besides, DGJM is simple in its principle and
easily employable using a computer algebra system. Hence, the proposed method is
suitable for solving these types of models.
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