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Abstract. Non-linear phenomena appear in many fields of engineering and science.
Research on numerical methods is continually extending with the improvement of the latest
computing tools. In today’s computational field, one requires maximum achievement in
a minimum amount of time. Therefore, there is a need to modify the Newton-type method
to achieve higher-order convergence to solve non-linear equations. While the modified
methods are expected to be higher-order convergent, the minor computational information
and the maximum time efficiency are also important factors. We propose a three-step
hybrid iterative method having a non-linear nature. Per iteration, the method requires three
function evaluations and three first-order derivatives. The method is theoretically proven
to be tenth-order convergent. The mathematical results of the proposed strategy to solve
models from fluid dynamics, electric field, and real gases demonstrated better performance.
In light of error analysis, computational productivity, and CPU times, the proposed method’s
performance is compared to the famous Newton and a recently proposed tenth-order method.
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1. Introduction

The modeling of systems in various disciplines is performed in the form of non-
linear equations of the type f (x) = 0. It is not always possible to obtain the exact
solutions of such equations, and therefore primarily numerical methods are used.
It is essential to be higher-order accurate and cost-efficient for a numerical method
by using fewer evaluations and iterations. In simple words, the method must be
efficient from the computational viewpoint.

Investigating effective methods for solving nonlinear problems is one of the most
pressing issues in engineering and science. We often solve nonlinear equations by
using the existing mathematical techniques such as the Newton Raphson method
(NRM), which is one of the most effective methods with quadratic convergence and
having two function evaluations per iteration [1]. However, the method has a pitfall
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related to a failure of the first-order derivative of f (x) = 0 at either initial guess or
any other approximate value of the required solution during the iteration process.
Because of its quadratic convergence, the Newton approach has received much
attention among the nonlinear solvers [2]. As it is quoted by Traub and Kung [3],
an ideal iterative solver should have its order equal to its number of function
evaluations. In this regard, NRM is considered to be an optimal iterative process.
While the objective of the ongoing investigation is to develop a method alternative
to the Newton technique, we came to know that the Traub and Kung [3] conjecture
is only a guess of numerous research analyses, which is negligible in progress for
the development of a combination of numerical solvers [4]. The idea of efficiency
index (ζ = p1/ω) is likewise significant in rating the numerical techniques for the
afore-mentioned purpose. The efficiency index considers the function evaluations per
iteration (ω) and order of convergence (p) of a technique. Thus, order of conver-
gence is essential for comparing two numerical solvers, but other factors, includ-
ing efficiency index, number of function evaluations, asymptotic error constant, rate
of convergence, speed, and stability, are also essential. The NRM through Taylor’s
expansion in [1], the Homotopy Perturbation technique [5], the variational iterative
technique [6], the Adomian decomposition and the quadrature rules [7] are some of
the strategies that are used to find approximate solutions of nonlinear models emerg-
ing from several research studies.

In [8], the development of an iterative technique was sped up by joining two dis-
tinct methods with orders of q1 and q2, respectively, to acquire a procedure with
order q1q2. While this methodology employs additional cost per iteration, the re-
sulting strategy is always guaranteed to be faster than some lower-order techniques.
Inspired by this methodology, we will put forward a tenth-order convergent method
by merging the second-order Newton’s technique (NRM) with an efficient Newton-
-type method of fifth-order convergence found in [8]. Compared to some available
methodologies, the proposed procedure implies better performance. For example,
Jaiswal and Choubey [9] presented a three-step method of eighth-order with five func-
tion evaluations. Similarly, Liu et al. in [10] developed a three-step iterative scheme of
eighth-order of convergence with five function evaluations, and Cordero et al. in [11]
also showed a four-step technique of order eight with five function evaluations.

Furthermore, it may also be noted that the proposed three-step hybrid method is
equally applicable for solving systems of nonlinear equations, as has been discussed
in several recently published of the type [12–14]. The solution of the systems requires
an initial guess vector for the method to be useful since the method herein is a local
method. However, the method’s convergence is also guaranteed for the systems as it
is in the above-cited papers.

This present research work aims to propose an efficient three-step hybrid method
for dealing with nonlinear equations. The proposed strategy begins with Newton’s
step, used by various scholars [12–15]. The proposed three-step technique is for-
mulated to achieve tenth-order convergence with only six function evaluations per
iteration. After discretization of some differential equations [16–23], one needs to
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solve the resultant equations with numerical techniques such as the one proposed
herein. Other researchers may continue working in this interesting field by their
contributions regarding enhancement of the convergence order and the reduction of
the computational effort required for the simulation of several physical models given
in terms of nonlinear equations.

The fundamental component of the proposed technique is that it requires less
CPU time than other commonly used techniques having similar order of convergence.
As a result, the proposed technique is expected to outperform, match with other tech-
niques, and sometimes beat other techniques. The convergence analysis of the pro-
posed method for single variable models has also been carried out, and the asymptotic
error constant is determined.

2. Materials and methods

Single-variable nonlinear equations can be commonly represented as f (x) = 0,
where x is the required solution and f (x) may appear in the polynomial or tran-
scendental structure on the left-hand side of the equation. Most of the time, it is
impossible to solve a nonlinear equation for x directly. In such situations, numeri-
cal techniques come to our rescue by generating the convergent solution of nonlinear
equations. In this section, we will specifically discuss some currently existing tech-
niques. Let us consider the famous Newton technique that can be found in several
studies, for example, in [2]. The Newton Raphson Method (NRM) of quadratic con-
vergence while using two function evaluations f (xn) and f ′(xn) is given below:

xn+1 = xn −
f (xn)

f ′(xn)
, n = 0,1,2, ..., (1)

where initial approximation x0 has been used for getting solution x1, while the succes-
sive approximations will be started with an underlying guess at x = x0. In [1], Abro
& Shaikh introduced a three-step iterative technique (P6) of sixth-order convergence
with five function evaluations. The technique is shown below:

yn = xn −
f (xn)

f ′(xn)
,zn = yn −

f (yn)

f ′(yn)
,xn+1 = yn −

f (yn)+ f (zn)

f ′(yn)
. (2)

In [12], Waseem et al. proposed a new four-step fifth-order iterative method (WM).
This method is derivative based method and denoted by WM as shown below:

yn = xn −
f (xn)

f ′(xn)
,zn = yn −

f (yn)

f ′(xn)
,wn = zn −

f (zn)

f ′(xn)
,xn+1 = wn −

f (wn)

f ′(xn)
. (3)

In 2007, Noor and Noor, in [15], suggested a two-step iterative method (AD) with
fifth-order convergence, where the first-step is taken to be the well-known Halley
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method with third order convergence. Their method is described below:

yn = xn −
2 f (xn) f ′(xn)

2 f ′2(xn)− f (xn) f ′′(xn)
,xn+1 = xn −

2[ f (xn)+g(yn)] f ′(xn)

2 f ′2(xn)− [ f (xn)+g(yn)] f ′′(xn)
.

(4)
In [4] Shah et al., in 2016, preferred a pair of sixth-order convergence, denoted
by SA1 and SA2. These two techniques utilize three function evaluations and two
first-order derivatives per iteration. The following conditions depict the calculations
for SA1 and SA2:

yn = xn −
f (xn)

f ′(xn)
,zn = yn −

f (yn)

f ′(yn)
,xn+1 = zn −

f (zn)

f ′(yn)− f (yn)
. (5)

and

yn = xn −
f (xn)

f ′(xn)
,zn = yn −

f (yn)

f ′(yn)
,xn+1 = zn −

f (zn) f (yn)

f ′(yn) f (xn)−2 f (zn)
. (6)

In [9] Jaiswal and Choubey, in 2013, proposed a new three-step iterative scheme
(NEO) for solving non-linear equations. With five function evaluations, the scheme
approaches the eighth-order convergence as given below:

yn = xn −
f (xn)

f ′(xn)
,zn = yn −

2 f (xn)− f (yn)

2 f (xn)−5 f (yn)

(
f (yn)

f ′(xn)

)
,xn+1 = zn −

f (zn)

f ′(zn)
. (7)

In [10], the authors discussed an eighth-order convergent technique (O81) for solving
a nonlinear models. The method having first derivative in each step, as illustrated
below:

yn = xn −
f (xn)

f ′(xn)
,zn = yn −

f (xn)

f (xn)−2 f (yn)

(
f (yn)

f ′(xn)

)
,

xn+1 = zn −

[(
f (xn)− f (yn)

f (xn)−2 f (yn)

)2

+
f (zn)

f (yn)−5 f (zn)
+

4 f (zn)

f (xn)−7 f (zn)

](
f (zn)

f ′(xn)

)
.

(8)

In [11] Cordero et al., in 2021, proposed a method that consists of a four-step itera-
tive method (O82) with the eighth-order of convergence. The efficiency index of this
scheme is about 1.5157, which is better than NRM and some other existing methods.
The steps involved in the method are described below:

yn = xn −
f (xn)

f ′(xn)
,zn = xn −

f (xn)

8 f ′(xn)
− 3 f (xn)

8 f ′(yn)
,wn = xn −

6 f (xn)

f ′(xn)+ f ′(yn)+4 f ′(zn)
,

xn+1 = wn −
f ′(xn)+ f ′(yn)− f ′(zn)

2 f ′(yn)− f ′(zn)

(
f (wn)

f ′(xn)

)
.

(9)
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Recently, in [13], Tassaddiqa et al., in 2021, proposed a method with tenth-order
of convergence (ASA) having three steps with six evaluations. The efficiency index
of this technique is around 1.4678, which is better than several existing methods.
The computational scheme of the method is as follows:

yn = xn −
f (xn)

f ′(xn)
,zn = yn −

f (yn)

f ′(yn)
,xn+1 = zn −

f ′(zn)+3 f ′(yn)

5 f ′(zn)− f ′(yn)

(
f (zn)

f ′(yn)

)
. (10)

3. Proposed hybrid iterative method

Motivated by some recent findings [1, 13], we propose a new strategy with the
use of a classical Newton step while merging it with the fifth-order convergent and
efficient Newton-type method [8] as shown below:

yn = xn −
f (xn)

f ′(xn)
,xn+1 = yn −

5 f ′2(xn)+3 f ′2(yn)

f ′2(xn)+7 f ′2(yn)

(
f (yn)

f ′(xn)

)
. (11)

If the techniques to be mixed are not wisely selected, it causes some additional func-
tion evaluations. Nevertheless, quick convergence is guaranteed with an additional
computational cost. Therefore, inspired by the methodology of [1,13], we are propos-
ing a tenth-order strategy by merging the fifth-order Newton-type method with the
traditional second-order Newton technique, but it guarantees a faster order of con-
vergence than these two techniques themselves. The proposed hybrid three-step tech-
nique is represented below:

yn = xn −
f (xn)

f ′(xn)
, zn = yn −

f (yn)

f ′(yn)
,

xn+1 = zn −
5 f ′2(yn)+3 f ′2(zn)

f ′2(yn)+7 f ′2(zn)

(
f (zn)

f ′(yn)

)
.

(12)

The proposed strategy given above in (12) is denoted by the word ”Proposed” during
the numerical simulations. It will be shown to be a good and efficient choice among
several numerical solvers used for the said purpose.

3.1. Order of convergence

This section explains the derivation of the asymptotic error term, and consequently
the order of convergence for the proposed nonlinear hybrid iterative method given
in (12).

Theorem 1. Assume that κ ∈ S is the exact simple root of a differentiable func-
tion f :S⊂ R→ R on an open interval so that the three-step iterative technique N10,
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i.e., Eq. (12), then exhibits tenth-order convergence, and the resulting error term is:

εi+1 =−

(
d2

dκ2 f (κ)
)7
(

4
( d

dκ
f (κ)

) d3

dκ3 f (κ)−21
(

d2

dκ2 f (κ)
)2
)

3072
( d

dκ
f (κ)

)9 ε
10
i +O(ε11

i ).

(13)
where εi = xi −κ .
Proof. Suppose κ is the root of f (xi), where xi is the i-th iteration nearly to the root
by N10 and εi = xi −κ is the error term after i-th iteration. Utilizing Taylor’s series
for f (xi) about κ , we have

f (xi) =

(
d

dκ
f (κ)

)
εi +

(
d2

dκ2 f (κ)
)

εi
2

2
+

(
d3

dκ3 f (κ)
)

εi
3

6
. (14)

By Taylor’s series for
1

f ′(xi)
about κ , we obtained:

1
f ′(xi)

=

(
d

dκ
f (κ)

)−1

−

(
d2

dκ2 f (κ)
)

εi( d
dκ

f (κ)
)2 +

εi
2

d
dκ

f (κ)

−
d3

dκ3 f (κ)

2 d
dκ

f (κ)
+

(
d2

dκ2 f (κ)
)2

( d
dκ

f (κ)
)2

.

(15)
Multiplying (14) and (15) and putting the result in the first step of (12), we get:

σi =

(
2
(

d3

dκ3 f (κ)
)

d
dκ

f (κ)−3
(

d2

dκ2 f (κ)
)2
)

εi
3

6
( d

dκ
f (κ)

)2 +
εi

2 d2

dκ2 f (κ)

2 d
dκ

f (κ)
. (16)

By Taylor’s series for f (yi) about κ , we obtained:

f (yi) =

(
d

dκ
f (κ)

)
σi +

(
d2

dκ2 f (κ)
)

σi
2

2
+

(
d3

dκ3 f (κ)
)

σi
3

6
. (17)

By Taylor’s series for
1

f ′(yi)
about κ , we obtained:

1
f ′(yi)

=

(
d

dκ
f (κ)

)−1

−

(
d2

dκ2 f (κ)
)

σi( d
dκ

f (κ)
)2 +

σi
2

d
dκ

f (κ)

−
d3

dκ3 f (κ)

2 d
dκ

f (κ)
+

(
d2

dκ2 f (κ)
)2

( d
dκ

f (κ)
)2

.

(18)
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Multiplying (17) and (18) and putting the result in the second step of (12), we get:

ηi =

(
2
(

d3

dκ3 f (κ)
)

d
dκ

f (κ)−3
(

d2

dκ2 f (κ)
)2
)

σi
3

6
( d

dκ
f (κ)

)2 +
σi

2 d2

dκ2 f (κ)

2 d
dκ

f (κ)
. (19)

By Taylor’s series for f (zi) about κ , we obtained:

f (zi) =

(
d

dκ
f (κ)

)
ηi +

(
d2

dκ2 f (κ)
)

ηi
2

2
+

(
d3

dκ3 f (κ)
)

ηi
3

6
. (20)

By Taylor’s series for f ′(zi) about κ , we obtained:

f ′(zi) =
d

dκ
f (κ)+

(
d2

dκ2 f (κ)
)

ηi +

(
d3

dκ3 f (κ)
)

ηi
2

2
+

(
d4

dκ4 f (κ)
)

ηi
3

6
. (21)

By Taylor’s series for f ′(yi) about κ , we obtained:

f ′(yi) =
d

dκ
f (κ)+

(
d2

dκ2 f (κ)
)

σi +

(
d3

dκ3 f (κ)
)

σi
2

2
+

(
d4

dκ4 f (κ)
)

σi
3

6
. (22)

Finally, we substitute all required values in third step of (12) to get the following:

εi+1 =−

(
d2

dκ2 f (κ)
)7
(

4
( d

dκ
f (κ)

) d3

dκ3 f (κ)−21
(

d2

dκ2 f (κ)
)2
)

3072
( d

dκ
f (κ)

)9 ε
10
i +O(ε11

i ).

(23)
The above equation demonstrates that the proposed hybrid iterative method is
tenth-order convergent.

4. Comparative analysis

One of the most fundamental approaches to examine the strength of a numerical
technique for solving f (x) = 0 is to compare its order of convergence p, efficiency
index ζ , and the number of function evaluations per iteration ω to the existing tech-
niques. We have examined these parameters for the proposed novel hybrid iterative
method with some existing methods as shown in the following Table 1.

Table 1. Comparison of some iterative methods based on order, the efficiency index, and the function
evaluations per iteration

Method p ζ ω

Proposed 10 1.4678 6
Newton 2 1.4142 2

ASA 10 1.4678 6
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5. Mathematical analyses

To compare the proposed tenth-order hybrid iterative method (12) with other
techniques, we consider various scalar nonlinear models from existing literature.
Every calculation is performed in MAPLE 2020, installed on an Intel® Core™ i5
hp PC with 8 GB of RAM and a processing speed of 2.6 GHz. Critical analysis of
models showing many real-world phenomena that contain fixed parameters is nec-
essary for higher precision because they oscillate between exceptionally high range
(in 1070 or significantly higher) and sometimes short range (in 10−30 or even lower).
The numerical techniques should be highly accurate when models are nonlinear.
Higher-order methods are required to obtain better results in a reasonable amount
of time. The same situations have also been presented by [1, 4], where higher-order
and accurate methods are required to deal with several physical and natural
phenomena. The use and recommendation of higher-order nonlinear methods for
scalar equations are also encouraged in previous and current articles. For example,
the eighth-order method in [9–11], and fifteenth-order method in [14], have been
devised. While solving nonlinear models, we have employed three methods known
as the proposed method given in (12), the well-known Newton’s method given in
Eq. (1), and a recently devised ASA method given above in Eq. (10). The compari-
son is based on some parameters, including the number of iterations (i), the number
of function evaluations ω , the computational cost COC = i×ω , the absolute error
at the last iteration δ = |xn −κ|, and the CPU time (in seconds).

In the case of nonlinear case study problems, the final absolute error has been
calculated using:

δi+1 = |xi+1 − xi|. (24)

The pre-determined tolerance is maintained as: |δ | < 10−100 with 50 maximum
number of iterations. The computational cost (COC) of a technique is the result of
the quantity of iterations (i) needed to satisfy the indicated tolerance, and number of
function evaluations (ω) utilized per iteration. It is calculated as:

COC = i×ω. (25)

5.1. Open-channel flow system

In standard and ecological design, it remains a challenge to connect the water
stream with factors influencing the flow inside open channels such as trenches, seep-
age ditches, drains, and sewers. A stream rate is the volume of a stream passing
a specific point through space during a specified period. However, another diffi-
cult circumstance arises when the viable channel becomes clogged. In this situation,
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the Manning’s condition becomes an important factor for the water stream in
an unlocked channel flowing under steady stream positions:

f (h) =
√

m
n

Wh

[
Wh

W +2h

]2
3
−Q. (26)

The depth of water h in the channel has been assessed while expecting the remainder
of the boundaries as Q = 14.15 m3/s, W = 4.572 m, n = 0.017 and m = 0.0015.
The underlying supposition for the initial estimate is h0 = 18.5 m. The mathematical
outcomes under various methods are displayed in Table 2. It can be observed from
this Table that the proposed hybrid iterative method is computationally inexpensive
while producing the same accurate result (x∗i ) as produced by existing approaches.

Table 2. Mathematical outputs for the model (26) with the initial guess h0 = 18.5 m

Method i ω COC δ f (x∗i ) x∗i time
Proposed 4 6 24 3.2321e-577 0.0000e+00 1.4651 6.3e-02
Newton 9 2 18 2.9458e-169 1.1803e-337 1.4651 6.3e-02

ASA 4 6 24 1.9480e-591 0.0000e+00 1.4651 1.57e-01

5.2. Conversion in a chemical reactor

Consider the following nonlinear model:

f (x) =
x

1.0− x
−5.0 ln

(
0.4

1.0− x
0.4−0.5x

)
+4.45977, (27)

where x stands for the fractional (x ∈ (0,1)) conversion of species in a chemical
reactor. The numerical simulations produced some mathematical outcomes that are
represented in Table 3 for the simulations of the above chemical reactor problem
while assuming the initial guess to be 0.76. Once again, the proposed hybrid iterative
method is found to have smallest utilization of the machine time.

Table 3. Mathematical outputs for the problem 2 with the initial guess x0 = 0.76

Method i ω COC δ f (x∗i ) x∗i time
Proposed 3 6 18 5.7523e-136 4.9071e-1340 7.574e-01 3.1e-02
Newton 8 2 16 5.8129e-179 4.2738e-354 7.574e-01 1.09e-01

ASA 3 6 18 4.2199e-144 4.0372e-1422 7.574e-01 4.7e-02

5.3. Volume from Van der Waals equation

The van der Waals nonlinear condition is a well-known scientific model for
deciding the contrast between great and genuine gases, and it is as follows:

f (V ) = PV 3 −V 2(RT +hP)n+n2kV −hkn3. (28)
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The temperature of gas is R ≈ 0.0820578. The accompanying polynomial with third-
degree can be gotten under k = 16, h= 0.1243, n= 1.29, P= 37 atm, and T = 380◦C.
For V = 3.25, the mathematical results are represented in Table 4.

Table 4. Mathematical outputs for the problem 3 with the initial guess V0 = 3.25

Method i ω COC δ f (x∗i ) x∗i time
Proposed 4 6 24 1.4302e-151 4.1257e-1506 1.9708 0.00
Newton 11 2 22 4.8618e-188 3.3383e-373 1.9708 1.6e-02

ASA 4 6 24 4.5979e-181 1.8698e-1801 1.9708 1.09e-01

Sometimes, it may happen that at the cost of a little more computational time,
the errors will be drastically reduced and thus the accuracy is guaranteed to be
improved.

6. Conclusion

A new tenth-order convergent technique is proposed by merging second-order
Newton Raphson and an efficient Newton-type method with fifth-order convergence.
The amalgamation gives us a tenth-order convergent technique with six function
evaluations required per iteration. Using Taylor’s expansion, the asymptotic error
and order of convergence of the proposed hybrid method have been derived theoret-
ically and confirmed via computational order of convergence. The efficiency index
is calculated at about 1.4678. In addition, a comprehensive comparison of the pro-
posed method with other existing techniques on various non-linear models taken from
the literature has been carried out. The new tenth-order technique takes less CPU time
than other well-known methods. In the current era, many scholars developed such
methods that are initiated by classical Newton’s method with good performance.
Our main concern, in the present research work, is to improve the performance of
the Newton’s method by suitably blending it with the existing two-step methods.
In future studies, we plan to consider the Homotopy methods, as done in the research
works in [24, 25] and most of the references cited therein for the possible improve-
ment of the present approach regarding semilocal convergence analysis.
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