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Abstract. The present manuscript investigates the role being played by various laser
short heating sources in a conduction process of a metallic substrate. The Cattaneo heat
conduction model is considered in favour of its finiteness of conduction speed. The analytical
solutions for the temperature fields are determined via the application of the Laplace integral
transform. Finally, we sought a numerical Laplace inversion scheme where the analytical
inversion failed and graphically examined the significance of the heating parameters on the
temperature fields.
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1. Introduction

Heat conduction processes have been extensively studied in the literature in favor
of their vast applications in many science and engineering areas. These studies were
mostly based upon the classical Fourier’s model [1] that accounts for an infinite speed
of heat transfer. This defect alongside its unsuitability in predicting low-temperature
scenarios and others resulted in many models being proposed including, in particular,
the famous hyperbolic Cattaneo heat conduction model [2]. The Cattaneo model has
been able to account for a finite speed and adequately modeled heating problems
driven by external sources with short durations like laser short pulses among others,
see [3, 4] and the references therein. The laser short pulse process is a burning area
of research due to the current innovative and technological advancements. Metallic
substrate surfaces are treated with laser pulses for more rigidity and other applications
[5, 6].

Moreover, the determination of temperature fields in various media with and with-
out external heating sources remains an open problem with regards to various struc-
tural configurations and, on the other hand, the emerging mathematical techniques.
In line with this, various approximate and analytical methods have been employed
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in the last decades to scrutinize different forms of heat conduction models. For
instance, Nuruddeen and Zaman [7, 8] and Al-Duhaim et al. [9] analyzed heating
and thermal stress scenarios with mixed boundary conditions, respectively, using the
Wiener-Hopf technique. Yan et al. [10] proposed and utilized a novel series method
to examine the fractional diffusion equation; while Al-Khaled and Momani [11]
investigated the diffusion-wave equation with a fractional-order via the use of the
approximate decomposition approach. Other related studies include the investiga-
tion of the nonlinear heat diffusion model, comparative study of the Caputo and
conformable fractional-order derivatives in relation to the heat conduction equation,
tackling heat equation with nonlocal conditions, a method for the fractional conduc-
tion models, and the treatment of the nonlinear conduction process were all studied
using methods based on the Adomian’s approach [12-18]. Other approaches are com-
prised of the Lie’s symmetry method for the reduction of the heat conduction equation
[19] and the eigenfunctions expansion approach to a layered conduction slab [20] to
mention a few.

However, the present study is motivated by the fact that the Cattaneo heat con-
duction equation possesses finiteness of conduction speed alongside its ability to
model low-temperature scenarios like laser short heating sources. Thus, we inves-
tigate in this manuscript the role of three different laser short heating sources on
a conducting half-plane metallic substrate modeled using the Cattaneo heat conduc-
tion equation. The analytical solutions for the temperature fields will be sought using
the Laplace integral transform [21, 22]; see also [23, 26] for other relevant method-
ologies. Equally, we will utilize the numerical Laplace inversion scheme by Abate
and Valkó [27] where the analytical inversion fails and goes ahead with determina-
tion of the respective temperature fields. Furthermore, the present paper takes the fol-
lowing organization: Section 2 gives some basics about the heating process, together
with the method to be utilized. In Section 3, we give the formulation of the aiming
problem to tackle in this study. Section 4 gives the application of the outlined method
on the formulated problem for the determination of the temperature fields. Section 5
presents the obtained results graphically and makes some discussions; while Section
6 gives some concluding remarks.

2. Preliminaries and methods

This section outlines some basics about the heat conduction process, together with
the method to be utilized; specifically, the Laplace integral transform and its inverse.

2.1. Heat conduction equation

Here, we consider the two famous heat conduction equations based on the Fourier’s
law and the modified constitutive equation by Cattaneo.
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2.1.1. Fourier’s heat conduction equation

The classical one-dimensional parabolic heat conduction equation based on the
Fourier’s law in the presence of a heating source function f (x, t) reads as follows [1]

B
∂w
∂ t

=
∂ 2w
∂x2 + f (x, t), (1)

where w = w(x, t) denotes the temperature field [K] in space x and time t variables

(measured in m and s, respectively), and B =
ρcp

k
[s/m2] with ρ – the density

[kg/m3], cp – the specific heat capacity [J/(kg K)] and k – the thermal diffusivity
of the medium [W/(m K)], correspondingly.

2.1.2. Cattaneo heat conduction equation

The one-dimensional hyperbolic heat conduction equation that accounts for
a finite speed based on the modified constitutive equation by Cattaneo in the
presence of a heating source function f (x, t) reads as follows [2-4]

A
∂ 2w
∂ t2 +B

∂w
∂ t

=
∂ 2w
∂x2 + f (x, t), (2)

where w = w(x, t) denotes the temperature field [K] in space x and time t variables

(measured in m and s, respectively), A =
ρcpτ

k
[s2/m2], and B =

ρcp

k
[s/m2] with

τ – the time relaxation [s], ρ – the density [kg/m3], cp – the specific heat capacity
[J/(kgK)] and k – the thermal diffusivity of the medium [W/(mK)], correspondingly.

2.2. Methodology

The present study employs the Laplace integral transform as the methodology of
the study. We therefore give more about the details of this method in this subsection.

2.2.1. Laplace transform

The definition of the classical Laplace integral transform [21, 22] and its corre-
sponding inverse transform will respectively be utilized in this study. What’s more,
s will denote the Laplace transform’s parameter throughout the manuscript.

2.2.2. Numerical inverse Laplace transform

Furthermore, in a situation where by the analytical inversion of the Laplace trans-
form is not possible, we will resort to using the powerful numerical Laplace inversion
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scheme by Abate and Valkó [27]. In [27], the numerical Laplace inversion scheme
was proposed at a given time point, say t0, and is implementable on the Mathematica
software via the method’s inversion package.

3. Problem formulation

In this section, we give the statement of the problem with regards to the temper-
ature determination we are aiming to tackle in this study and, the three laser source
functions to examine.

3.1. Statement of the problem

We consider a half-space metallic substrate lying in 0 ≤ x < ∞ and driven by
a laser pulse heating source f (x, t). The temperature distribution in the substrate is
thus governed by the one-dimensional hyperbolic Cattaneo heat conduction equation
given in equation (2). We also prescribe the following initial conditions

w(x, t) = u0, at t = 0,
∂w
∂ t

(x, t) = 0, at t = 0,
(3)

where u0 is a prescribed constant temperature of which the material is kept before
the heating process begins. What’s more, we also consider the following boundary
conditions

∂w
∂x

(x, t) = 0, on x = 0,

lim
x→∞

w(x, t) = 0.
(4)

In the above boundary conditions, the heat flux is assumed to be zero at x = 0; while
the temperature varnishes at a very large depth.

3.2. Laser heating sources

With regards to the laser source function f (x, t) in equation (2), we consider three
different laser heating sources here that will later be analyzed. The heating sources
are as follows:

• Source I: the laser short-pulse heating source by Yibas et al. [5] given by

f (x, t) = I0ηe−ηx. (5)
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• Source II: the laser short-pulse heating source by Yibas et al. [6] given by

f (x, t) = I0ηe−ηxe−γt . (6)

• Source III: the laser short-pulse heating source of volumetric nature by Al Duhaim
et al. [4] of the form

f (x, t) = I0ηe−ηx(e−γt − e−β t). (7)

Also, in the above equations (5), (6) and (7), I0 is the laser peak power intensity
[W/m2], η is the absorption coefficient [1/m]; while β and γ are the laser pulse
parameters [1/s], respectively.

4. Temperature determination

This section employs the Laplace integral transform method earlier outlined to
tackle the formulated problem of the heat conduction process via the Cattaneo model
given in equation (2) and driven by laser source functions as expressed in equations
(5)-(7).

4.1. Temperature in the presence of source I

Considering the hyperbolic Cattaneo model given in equation (2) in the presence
of the laser heating Source I given in equation (5), the explicit model becomes

A
∂ 2w
∂ t2 +B

∂w
∂ t

=
∂ 2w
∂x2 + I0ηe−ηx. (8)

Now, on taking the Laplace transform in t of equation (8), the equation after utilizing
the initial conditions given in equation (3) reduces to the following second-order
ordinary differential equations

∂ 2w∗

∂x2 − r2w∗ =−u0(As+B)− ηI0e−ηx

s
, (9)

where

r =
√

As2 +Bs.

Similarly, the transformed boundary conditions with respect to the Laplace transform
are

∂w∗(x,s)
∂x

= 0, on x = 0,

lim
x→∞

w∗(x,s) = 0.
(10)
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Therefore, the ordinary differential equation given in equation (9) admits the follow-
ing analytic exact solution

w∗(x,s) =
u0(As+B)

r2 +
ηI0e−ηx

s(r2 −η2)
+ c1erx + c2e−rx, (11)

where c1 and c2 are constants to be determined via the given boundary conditions.
Furthermore, on applying the second transformed condition in equation (10), the
obtained solution in the above equation further reduces to

w∗(x,s) =
u0(As+B)

r2 +
ηI0e−ηx

s(r2 −η2)
+ c2e−rx. (12)

Moreover, the complete solution after utilizing the first transformed condition in
equation (10) becomes

w∗(x,s) =
u0(As+B)

r2 +
ηI0e−ηx

s(r2 −η2)
− η2I0e−rx

rs(r2 −η2)
. (13)

Therefore, having determined the unknowns, we then go back to equation (13) to
invert the solution back to its original domain, that is, from (x,s)→ (x, t). To do this,
we apply the inverse Laplace transform to equation (13) to obtain

w(x, t) = u0 +
I0λ1(t)e−ηx−

t(
√

4Aη2+B2+B)
2A

2η
√

4Aη2 +B2

− η2I0

2πi

∫ c+i∞

c−i∞

(
e−x

√
As2+Bs

s
√

As2 +Bs(As2 +Bs−η2)

)
estds,

(14)

where λ1(t) in the above equation is given by

λ1(t) = B
(

e
t
√

4Aη2+B2
A −1

)
+
√

4Aη2 +B2

(
e

t
√

4Aη2+B2
A −2e

t(
√

4Aη2+B2+B)
2A +1

)
.

(15)
Equation (14) is the overall solution of the temperature field in the presence

of laser Source I. Also, since the third part appearing under the Laplace inversion
integral cannot be evaluated analytically, we resort to using the numerical Laplace
inversion scheme by Abate and Valkó [27]. In this case, we report the analytically
approximated solution in Figure 1a,b at different heating time levels.

4.2. Temperature in the presence of source II

Considering the hyperbolic Cattaneo model given in equation (2) in the presence
of the laser heating Source II given in equation (6), the explicit model reads
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A
∂ 2w
∂ t2 +B

∂w
∂ t

=
∂ 2w
∂x2 + I0ηe−ηxe−γt , (16)

Now, taking the Laplace transform in t of equation (16), the equation after utilizing
the initial conditions given in equation (3) reduces to the following second-order
ordinary differential equation

∂ 2w∗

∂x2 − r2w∗ =−u0(As+B)− ηI0e−ηx

s+ γ
, (17)

where

r =
√

As2 +Bs.

Thus, without loss of generality, we proceed as in the preceded case to obtain the
following temperature field

w(x, t) = u0 +
ηI0λ2(t)

2
√

4Aη2 +B2 (γ(B−Aγ)+η2)
e−ηx−

t(
√

4Aη2+B2+B)
2A

− η2I0

2πi

∫ c+i∞

c−i∞

 ex
(
−
√

s(As+B)
)

(γ + s)
√

s(As+B)(s(As+B)−η2)

estds,

(18)

where λ2(t) in the above equation is given by

λ2(t) =−2Aγ

(
e

t
√

4Aη2+B2
A −1

)
+B

(
e

t
√

4Aη2+B2
A −1

)
+

√
4Aη2 +B2

(
−2e

t(
√

4Aη2+B2−2Aγ+B)
2A + e

t
√

4Aη2+B2
A +1

)
.

(19)

Equation (18) is the overall solution of the temperature field in the presence of laser
Source II. Again, since the third part appearing under the Laplace inversion integral
cannot be evaluated analytically, we resort to using the numerical Laplace inversion
scheme by Abate and Valkó [27]. We therefore report the analytically approximated
results in Figure 2a-c at different heating time levels.

4.3. Temperature in the presence of source III

Considering the hyperbolic Cattaneo model given in equation (2) in the presence
of the laser heating Source III given in equation (7), the explicit model is expressed
as follows

A
∂ 2w
∂ t2 +B

∂w
∂ t

=
∂ 2w
∂x2 + I0ηe−ηx(e−γt − e−β t). (20)
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Also, on taking the Laplace transform in t of equation (20), the equation after utilizing
the given initial conditions in equation (3) reduces to the following second-order
ordinary differential equation

∂ 2w∗

∂x2 − r2w∗ =−u0(As+B)−ηI0

(
1

γ + s
− 1

β + s

)
e−ηx, (21)

where

r =
√

As2 +Bs.

Also, without loss of generality, we proceed as in the above case to obtain the follow-
ing temperature field

w(x, t) = u0 +
1

2πi

∫ c+i∞

c−i∞
λ3(s)estds+

1
2πi

∫ c+i∞

c−i∞
λ4(s)estds, (22)

where λ3(t) are λ4(t) are expressed as follows

λ3(s) =
η2(γ −β )I0

(β + s)(γ + s)
√

As2 +Bs
(√

As2 +Bs−η

)(√
As2 +Bs+η

)e−x
√

As2+Bs,

(23)

λ4(s) =
η(γ −β )I0

(β + s)(γ + s)
(

η −
√

As2 +Bs
)(√

As2 +Bs+η

)e−ηx. (24)

Again, equation (22) is the overall solution of the temperature field in the presence
of laser Source III. Furthermore, since the second and third parts appearing under
the Laplace inversion integral cannot be evaluated analytically, we resort to using the
numerical Laplace inversion scheme by Abate and Valkó [27]. We therefore report
the analytically approximated results in Figure 3a-c at different heating time levels.

5. Results and discussion

This study investigates the significance of the three laser short heating sources
given in equations (5)-(7) on a conducting metallic substrate. The hyperbolic Cat-
taneo heat conduction model is considered. The solutions for the temperature fields
are obtain analytically using the Laplace integral transform method. Also, we utilize
the numerical Laplace inversion scheme by Abate and Valkó [27] where the analyti-
cal inversion process fails. Interesting graphical depictions to visualize the obtained
results are reported in Figures 1-3. Furthermore, we consider the substrate parame-
ters as A = 0.8 s2m−2, B = 1 sm−2, and the laser parameters I0 = 1 Wm−2, and we
consider the rest to be less than or equal to 1. We also fix the initial temperature to be
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u0 = 1 K. With this, we then study the variational effects of ther other laser heating
parameters on the temperature fields at different heating time levels.

Figure 1a,b shows the temperature variations driven by the laser Source I.
In both (a) and (b), the temperature distributions increase with an increase in time
t and eventually decays out along the substrate’s depth. It is noted that a decrease
in η results in a decrease of the decaying rate as can be seen in Figure 1b when
η = 0.25 m−1.

Figure 2a-c shows the temperature variations driven by the laser Source II.
The same interpretation of Figure 1a,b goes to Figure 2a,b when γ = 1 s−1 at
η = 1 m−1 and η = 0.25 m−1, respectively, but with a slight difference of the temper-
ature rise. However, when γ decreases to 0.35 as shown in Figure 2c, the temperature
distribution begins to rise at the same time with an increase in the decaying rate
in comparison to Figure 2b when η = 0.25 m−1 and γ = 1 s−1.

Figure 3a-c shows the temperature variations driven by the laser Source III. Again
here, the same interpretation of Figure 1a,b applies to Figure 3a,b but with a slight
difference of the temperature rise. This, in fact, means the presence of more laser
parameters shrinks the rate at which the temperature rises. This effect can be noted
in all the Sub-figures in Source III. Now, with regards to the Figure 3c, a com-
plete opposite behaviour is observed. This behaviour is equivalent to the behaviour
of the thermal stress of the same laser source examined by Al-Duhaim et al. [3] via
the Laplace and Fourier cosine integral transforms. This in fact is caused by a simul-
taneous increase of any of the two parameters. Also, in this case, the temperature
approaches the constant initial temperature u0 = 1 K even at a higher depth. This
indeed contradicts the boundedness boundary condition prescribed at the higher
depth of the substrate in the formulation; thus, this situation is discarded.

Fig. 1. Two-dimensional visualization of the temperature field determined in equation (14)
under Source I at different heating time levels when: a) η = 1, and b) η = 0.25
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Fig. 2. Two-dimensional visualization of the temperature field determined in equation (18)
under Source II at different heating time levels when: a) η = 1,γ = 1,

b) η = 0.25,γ = 1, and c) η = 0.5,γ = 0.35

Fig. 3. Two-dimensional visualization of the temperature field determined in equation (22)
under Source III at different heating time levels when: a) η = 1,γ = 0.7,β = 0.75,

b) η = 0.25,γ = 0.5,β = 0.75, and (c) η = 0.5,γ = 0.85,β = 0.75.
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6. Conclusion

In conclusion, the present manuscript investigated the significance of three dif-
ferent laser short heating sources on a conducting metallic substrate. The hyper-
bolic Cattaneo heat conduction model was considered for its finiteness of conduction
speed. The analytical solutions for the temperature fields were sought analytically
using the Laplace integral transform method. Moreover, we utilized the numeri-
cal Laplace inversion scheme by Abate and Valkó [27] where the analytical inver-
sion failed and further went ahead with determination of the respective tempera-
ture fields. Finally, certain interesting graphical depictions were supplied to visualize
the obtained results, alongside noting the variational effects of the laser short pulse
heating on the resulting temperature fields.
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