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Abstract. Tuberculosis (TB), a serious public health infection that mainly affects the lungs,
is caused by bacteria (Mycobacterium tuberculosis, TB). This research is designed and
analyzed using a compartmental modelling approach to study the transmission dynamics
of TB with different stages of infection. Qualitative analysis of the proposed model reveals
that the model exhibits two equilibrium points: the disease-free equilibrium point (DFE)
and the endemic equilibrium (EE). The basic reproduction number (R0) is determined using
the next-generation matrix technique, and stability analysis is carried out to show whether the
disease can persist or die out in population. Further analysis of the model shows that the EE
is globally asymptotically stable (GAS) when R0 > 1. With the aid of the forward sensitivity
index method, we determine the most sensitive parameters of the model to control the spread
of TB infection effectively. Our analysis shows that treatment (medication) and campaign
awareness coupled with other key control measures, could help maintain the spread of MTB
infection in human geographical boundaries.
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1. Background of the research work

Mycobacterium tuberculosis (MTB) is a disease caused by tubercle bacillus or M
tuberculosis which belongs to the genus Mycobacterium under the family of Myco-
bacteriaceae that affect a variety of hosts, including humans, livestock animals (horse,
camel, pig) and wild animals (tiger, lion, gorilla), which serve as a reservoir or



56 U.T. Mustapha, B. Idris, S.S. Musa, A. Yusuf

spillover [1]. The disease ranks second to HIV among the leading causes of death
worldwide, killing about two million people every year, especially in developing
countries, such as India, China, Indonesia, Nigeria, South Africa and so on [1]. In
the year 2017 alone, there were about 12.2 million new cases of TB infection glob-
ally, including about 1.93 million deaths (and about 0.4 million are people living with
HIV) [2]. Previous studies show, that about six countries are considered to have about
60% of the total MTB cases globally, of which four are counties within Asia, and the
rest are African countries [2].

The MTB infection is an air-borne disease which is transmitted from human to
human via air [2]. When a human with lung MTB infection coughs, he/she drops the
pathogen in the air; an individual is required to inhale a few among the pathogen to
get infected with the disease. MTB is classified as pulmonary TB when it affects the
lungs, while it is considered extra-pulmonary TB when it affects other parts of the
body [1, 2]. The most common signs and symptoms of MTB disease are dry cough-
ing, feverish condition, chest pain and most a times loss of weight. MTB appears in
the host’s body roughly fourteen to eighty-four days (i.e., two to twelve weeks) [1].
The MTB disease can be cured and treated when it has been noticed during the early
phase [2]. Active MTB disease can be treated within one hundred and eighty days
with non-stop taking of medication (drugs) under the supervision of certified medi-
cal personnel trained on handling TB patients. At least 50 million lives were saved
during 15 years of TB infection, some of which through treatment, and some via
special diagnosis [1, 2].

A lot of epidemiological models have been designed and used to assess the trans-
mission dynamics of MTB infection in humans based on geographical disparities
(see, for instance, [1, 3–6] and the references therein). Some previous studies of
epidemic models examined the transmission dynamics of MTB in humans in a con-
fined area/environment, such as transmission of TB infection among prison inmates,
and the effect of home and hospital treatment on the overall dynamics of TB infec-
tion [7–9]. The aim of the current research work is to design a dynamic model (based
on extending some of the research mentioned above) for MTB transmission dynamics
to gain more qualitative insight on TB control.

The paper is organised as follows: the model description is contained in section
2, and section 3 consists of a basic analysis of the model while the sensitivity anal-
ysis was carried out in section 4. Finally, the numerical scenario and conclusion are
contained in section 5 and 6 respectively.

2. Description of the model

The total number of population at time t, represented by N(t), is categorised into
six (6) compartments as follows: susceptible human, who are at risk of being infected
with MTB disease (S(t)), Exposed individuals or latent stage (E(t)), asymptomatic
MTB infected individuals with no clinical symptoms of MTB infection (A(t)), symp-
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tomatic MTB infected individuals with clinical symptoms (I(t)), hospitalized individ-
uals, who are under treatment of MTB infection (H(t)), individuals who recovered
from MTB infection (R(t)), so that:

N(t) = S(t)+E(t)+A(t)+ I(t)+H(t)+R(t).

The model flow chart (Fig. 1) and the equations for the MTB dynamics are given
below.

dS
dt

= Π−λS+θR−µS,

dE
dt

= λS− (σ +µ)E,

dA
dt

= ασE − (γ1 + τ1 +δ1 +µ)A,

dI
dt

= (1−α)σE − (γ2 + τ2 +δ2 +µ)I,

dH
dt

= γ1A+ γ2I − (δ3 + τ3 +µ)H,

dR
dt

= τ1A+ τ2I + τ3H − (θ +µ)R,

(1)

where

λ =
β (η1E +η2H +η3A+ I)

N
, (2)

β is the effective contact rate, and η1, η2 and η3 are modification for for the
decrease/increase of MTB infection.
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Fig. 1. Flow chart of the MTB infection model
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Table 1. Description of the state variables and parameters apply in the system (1)

Variables Demonstration
N Total humans population
S Susceptible individuals
E Latent individuals
A Asymptomatically infected individuals

with no clinical symptoms of MTB infection
I Symptomatically infected individuals

with clinical symptoms of MTB infection
H Hospitalized individuals
R Recovered individuals

Parameters
Π Recruitment rate of humans
µ Natural death rate
β Transmission probability for the MTB infection
σ Progression of individuals from latent state of MTB infection
α Proportion of infected individuals who developed symptoms

τi(i = 1,2,3) Recovery rates of individuals
θ Loss of immunity

δ j( j = 1,2,3) Death caused by the disease
γk(k = 1,2) Hospitalization rate of individuals

3. Basic analysis of the model

3.1. Positivity of the solution and invariant region

Theorem 1 The solutions of the system (1) remain positive at initial condition ∀t > 0.

Moreover limsup
t→∞

N(t)≤ Π

µ
. 2

PROOF Let us consider, the first equation of the system (1) so,

dS
dt

= Π+θR−λS−µS ≥−(λ +µ)S. (3)

So that

S(t)≥ S(0)exp−
∫ t

0(λ+µ)dt > 0. (4)

Similarly, one can see that all the remaining variables of the system are positive
∀t > 0. ■

Lemma 1 Let the feasible biological region of the system be (1)

D =

{
(S,E,A, I,H,R) ∈ ℜ

6
+ : N ≤ Π

µ

}
are positively, invariant region and also attracting. 2
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PROOF It is from the fact that
dN(t)

dt
= Π−µN − (δAA+δII+δHH)≤ Π−µN, so

that,
dN(t)

dt
< 0, if N(t)>

Π

µ
. Hence, standard comparison theorem [10] are used to

prove that N(t)≤N(0)exp−µt +
Π

µ
(1−exp−µt). Specifically, N(t)≤ Π

µ
if N(0)≤ Π

µ
.

So, D is positive invariant region. Moreover, if N(t) >
Π

µ
the solution move into D

infinitely many time, or N(t) moves closer to
Π

µ
then variables that are infected move

closer to zero. So D is attracting (The solutions are all in ℜ
6
+ and finally, D stays

or approaches the region).
Consequently, the system (1) is mathematically well-posed and epidemiologically

reasonable because the variables are positive for all t ≥ 0. Thus, it is enough to
consider the changes in the system (1) in D [11]. ■

3.2. Disease-free equilibrium and basic reproduction number

In the absence of the disease, this means that (E∗ = 0,A∗ = 0, I∗ = 0,H∗ = 0),
therefore the system above becomes

G◦ = (S∗,E∗,A∗, I∗,H∗,R∗) = (
π

µ
,0,0,0,0,0). (5)

The stability state of ε0 will be investigated by applying the method of next generation
matrix on the system (1) [12]. The matrices F (is the rate of appearance of new
infection ) and V (is the matrix containing the rest of the terms)

F =


βη1 βη3 β βη2

0 0 0 0

0 0 0 0

0 0 0 0

 , V =


K1 0 0 0

−ασ K2 0 0

−σK5 0 K3 0

0 −γ1 −γ2 K4

 (6)

then V−1 is obtained as

V−1 =



1
K1

0 0 0

ασ

K1K2

1
K2

0 0

σK5

K1K3
0

1
K3

0

σ(αK3γ1 +K2K5γ2)

K2K1K3K4

γ1

K2K4

γ2

K3K4

1
K4


, (7)
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and

FV−1 =


K7

β η3

K2
+

β η2γ1

K2K4

β

K3
+

β η2γ2

K3K4

β η2

K4

0 0 0 0

0 0 0 0

0 0 0 0

 (8)

where,

K1 = σ +µ , K2 = γ1 + τ1+δA +µ , K3 = γ2 + τ2 +δI +µ , K4 = δH + τ3 +µ , K5 =

1−α and K6 = θ +µ,K7 =
β η1

K1
+

β η3α σ

K1K2
+

β σ K5

K1K3
+

β η2σ (α K3γ1 +K2K5γ2)

K1K2K3K4
.

It follows that the associated basic reproduction number of the model (1), represented
by R0, is known as:

R0 =
β (α σ K3K4η3 +α σ K3η2γ1 +σ K2K5η2γ2 +σ K2K4K5 +K2K3K4η1)

K1K2K3K4
(9)

where ρ represents the spectral radius of FV−1. The threshold quantity, R0, is the
basic reproduction number for MTB infection, which determines whether the disease
persists or is eliminated in time [11, 13–15].

Using theorem 2 of [12], with reproduction number, R0 < 1, the disease free-
equilibrium (DFE) point is locally asymptotically stable, indicating that the popula-
tion can not be invaded by the disease. Hence, the proof of the following theorem
holds as follows.

Theorem 2 The DFE (ε0), of the MTB model (1) is locally asymptotically stable
(LAS) if R0 < 1, and unstable if R0 > 1. 2

3.3. Endemic equilibrium analysis

Here, the non-continuation of the endemic equilibrium (EE) point of system (1)
will be dealt with whenever the R0 is less than one. We can say that, the EE point of
system (1) is in a stable state, that is, the infection might be wiped out. For R0 > 1,
we can say the disease continues to remain in the human population, hence at least
one compartment among the compartments of the system (1) is not null. Let
ε1 = (S∗,E∗,A∗, I∗,H∗,R∗) be an endemic equilibrium solution of model (1). Solving
the equations of the system (1) with respect to λ , gives:
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S∗ =
K1K4K2K3K6ΠH

(K4K6 (λ +µ)K3 −σ θ λ K5 (K4τ2 + γ2τ3))K2 −α σ θ λ K3 (K4τ1 + τ3γ1)
,

E∗ =
K4K2K3K6λ ΠH

((K4K3K6K1 −σ θ K5 (K4τ2 + γ2τ3))K2 −α σ θ K3 (K4τ1 + τ3γ1))λ +K4K2K3K6K1µ
,

A∗ =
α σ K4K3K6λ ΠH

((K3K6K1 −σ θ K5 (K4τ2 + γ2τ3))K2 −α σ θ K3 (K4τ1 + τ3γ1))λ +K4K2K3K6K1µ
,

I∗ =
K5σ K4K2K6λ ΠH

((K4K3K6K1 −σ θ K5 (K4τ2 + γ2τ3))K2 −α σ θ K3 (K4τ1 + τ3γ1))λ +K4K2K3K1µ
,

H∗ =
σ (K2γ2K5 +K3γ1α)K6λ ΠH

((K4K3K6K1 −σ θ K5 (K4τ2 + γ2τ3))K2 −α σ θ K3 (K4τ1 + τ3γ1))λ +K4K2K3K6K1µ
,

R∗ =
ΠH (K5 (K4τ2 + γ2τ3)K2 +α K3 (K4τ1 + τ3γ1))λ σ

(K4K6K1 (λ +µ)K3 −σ θ λ K5 (K4τ2 + γ2τ3))K2 −α σ θ λ K3 (K4τ1 + τ3γ1)
.

(10)

3.4. Global stability of equilibrium point

To prove the global stability of the EE points, the following theorem is claimed.

Theorem 3 The EE points, ε1, of the model (1) is globally asymptotically stable
(GAS) if R0 > 1 and unstable if R0 < 1. 2

PROOF Suppose the Lyapunov function given by f = g1E+g2A+g3I+g4H. Where,

g1 = R0, g2 =
β (K4 +η2γ2)

K3K4
, g3 =

β (K4 +η2γ1)

K2K4
, g4 =

βη2

K4
.

The Lyapunov derivative is known as (dot stand for differentiation with respect to
time, t)
ḟ = g1Ė +g2Ȧ+g3İ +g4Ḣ,
= g1[β (η1E+A+ I+η2H)−K1E]+g2(ασE−K2A)+g3(σK5E−Q3I)+g4(γ1A+
γ2I −K4A)
= (g1βη1−g1K1+g2ασ +g3σG5)E+(g1β −g2K2+g4γ1)A+(g1β −g3K3+g4γ2)I+
(g1βη2 −g4K4)H,

≤ (R0 −1)(η1E +A+ I +η2H)≤ 0 if R0 ≤ 1, since S ≤ N =
Π

µ
for all t ˙∈ D. Thus,

ḟ ≤ 0 if R0 ≤ 1 with ḟ = 0 if and only if E = A = I = H = 0. Moreover, the biggest

compact invariant region in D =

{
(S,E,A, I,H,R) ∈ D : ḟ = 0

}
is the singleton

E0. It shows from the LaSalle’s Invariance Principle [16] that each solution of equa-
tions (1) with a starting point in D converges to DFE E0 as t → ∞. Substituting

E = A = I = H = 0 into the equation of the model (1), gives S(t) → Π

µ
as t → ∞.
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Therefore, (S,E,A, I,H,R)→ (
Π

µ
,0,0,0,0,0) as t → ∞ for R0 ≤ 1, so that E0 is GAS

in D if R0 ≤ 1. ■

(a) (b)

(c) (d)

Fig. 2. Time series plot of the model (1) considering initial condition,
using the estimated values (1) with R0 < 1

4. Sensitivity analysis

In this section, local sensitivity indexes were evaluated in relation to the repro-
duction number, R0, for the biological parameters of the MTB infection. The model
is analyzed by applying the method of forward sensitivity index. The optimization of
the projected result is obtained by investigating the impacts and status of key control
parameters and their relative effects on the control of the infection [17–19].

It is indicated by Γ
R0
β

the normalized sensitivity index of the output R0 with respect
to a parameter (θ), and is defined as

χ̇θ = Γ
R0
θ

=
θ

R0
× ∂R0

∂θ
. (11)

Using the parameter values defined above Π = 53, µ = 0.0047, β = 0.000535,
σ = 0.001, α = 0.00071, τ1 = 0.000453, τ2 = 0.000543, τ3 = 0.000234,
γ1 = 0.2849, γ2 = 0.22806, δ1 = 0.0002, δ2 = 0.0003, θ = 0.00271, δ3 = 0.0004,
the elasticity index values have been calculated (see Table 2 and Fig. 3).

From the elasticity investigation conducted above, one can see that if θ increases
let say by 5% with the remaining parameters fixed, it attracts another 5% in R0.
Similarly, an increase or decrease of any biological parameter of the model (1) will
cause the increase or decrease in the reproduction number.
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Table 2. Forward Normalized Sensitivity Indices

Parameter Elasticity Indices Elasticity index values
β χ̇β 0.470
Π χ̇Π 0.023
µ χ̇µ 0.500
θ χ̇θ 0.320
σ χ̇σ 0.011
α χ̇α 0.015
γ1 χ̇γ1 0.543
γ2 χ̇γ2 0.900
γ3 χ̇γ3 –0.600
τ1 χ̇τ1 –0.500
τ2 χ̇τ2 –0.340
τ3 χ̇τ3 –0.150

1 2 3 1 2 3

Parameters

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

E
la

s
ti
c
it
y
 i
n
d
ic

e
s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 3. Elasticity indices with respect to parameters presented in Table 2

5. Numerical simulations

Here, we performed numerical simulation for the MTB infection using the model
(1). The parameters used are given in Table 1, and the results are demonstrated with
control measures. From Figure 4, the susceptible individuals S(t) increase, while
exposed individuals decrease E(t), which is plausibly due to the effect of awareness
programs. In Figure 5, shows that asymptomatic individuals A(t) and symptomatic
individuals I(t) decrease due to medication, campaign awareness and other con-
trol measures; a hospitalized compartment, H(t), those who are hospitalized due to
infection, decrease due to treatment, and the recovery compartment R(t) increases.
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Fig. 4. Dynamical behaviour of Vulnerable humans S(t) and that of Latent humans E(t) with control
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Fig. 5. Dynamical behaviour of asymtomatic individuals A(t) and that of infected individuals I(t) with
control
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Fig. 6. Dynamical behaviour of hospitalised individuals H(t) and that of recovered individuals R(t)
with control

Table 3. Parameter values for Numerical Simulations

Parameter Values Units Source
Π 53 Day−1 Assumed
µ 0.0047 Day−1 [1]
β 0.000535 Day−1 [1]
η1 [0,1) Dimensionless Assumed
η2 [0,1) Dimensionless Assumed
θ 0.00271 Day−1 Est. Using [1]

τi(i = 1,2,3) (0.000453,0.000543,0.000234) Day−1 [1]
σ (0.001) Day−1 [20, 21]

δ j( j = 1,2) (0.0002,0.0003) Day−1 [1]

6. Conclusions

This research work presented an epidemic modelling study for the transmission
dynamics of MTB infection in the human population. The model was qualitatively
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analysed to examine the transmission dynamics of MTB disease and was used in
curbing the transmission with consideration of different stages of the infection.
The system exhibits two equilibrium points: the disease-free equilibrium point (DFE),
which is locally asymptotically stable whenever the R0 < 1, otherwise is unstable,
and the endemic equilibrium. Numerical results also showed that the treatment, cam-
paign awareness, and other possible measures are vital to control MTB infection
in human geographical boundaries.
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