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Abstract. In this paper, we consider Markov birth-death processes with constant intensities 

of transitions between neighboring states that have an ergodic property. Using the exponen-

tial distributions properties, we obtain formulas for the mean time of transition from the 

state i to the state j and transitions back, from the state j to the state i. We found expressions 

for the mean time spent outside the given state i, the mean time spent in the group of states 

(0,...,i–1) to the left from state i, and the mean time spent in the group of states (i+1,i+2,...) 

to the right. We derive the formulas for some special cases of the Markov birth-death pro- 

cesses, namely, for the Erlang loss system, the queueing systems with finite and with infinite 

waiting room and the reliability model for a recoverable system.   
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1. Introduction  

The birth-death stochastic process is one of the most important special cases of 

the continuous-time homogenous Markov process where the states represent the 

current size of a population. This process has many applications in queuing theory, 

reliability engineering, demography, biology and other areas [1-6]. However,  

establishing analytic and computationally practical formulas for their transition 

probabilities is usually difficult [2]. The state-of-the-art method for computing the 

transition probabilities of birth-death processes proposed in [3] allows for statistical 

estimation of general birth-death processes using likelihood-based inference [7]. 

As part of the practical experience of implementing various systems and analyz-

ing their reliability indicators, it became necessary to not only estimate the availa-

bility factor and mean time between failures of the system but to also estimate  

the mean time i jT  of transition from any state i to any other state j, where i < j,  
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as well as the average time jiT  of transition back from state j to state i. The need to 

calculate the mean values of i jT  and jiT  is also due to the use of birth-death models 

in epidemiology to predict the rate of the spread of epidemics.  

In this paper, we derive analytical formulas for calculating the mean transition 

time between arbitrary states, the mean time spent outside the given state i, the mean 

time spent in the group of states (0,...,i–1) to the left from state i, and the mean time 

spent in the group of states (i+1,i+2,...) to the right. We obtain these formulas  

for some special cases of the Markov birth-death processes, namely, for the Erlang 

loss system, the queueing systems with finite and with infinite waiting room and 

the reliability model for a recoverable system.  

2. The birth-death process with an unlimited number of states 

Let us denote states by natural numbers 0, 1, 2, ... and assume that the intensi-

ties ,k i   are constant. Assume that for the birth-death process with an unlimited 

number of states starting from some k, the inequality 1 1k k      is satisfied. 
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Fig. 1. Transition graph for the birth-death process with an unlimited number of states 

It is well known that the distribution of the time intervals between any two suc-

cessive jumps in any Markov process with continuous time and discrete space of 

states is exponential. More precisely, let iW  be the instant of the ith jump of the 

birth-death process ( )X t  and 1i i iW W   be the sojourn time; suppose that 

( ) ,iX W k  then the process spends exponentially distributed time i  in the state 

( )X t k  with the mean  ( ) 1 / .i k kE      When a jump occurs, it will be  

a birth with the probability  /k k k    or a death with the probability 

 / .k k k    

Let us introduce notation i jT  to denote the mean time from the instant the sys-

tem comes to state i to the transition to state j. For the birth-death process,  

described by the state graph shown in Figure 1, the following equations hold: 
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Consistently expressing k jT  through 0 jT  for {1,2,..., 1},k j   we obtain the 

equalities 
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where / , 1.s s s s     Equalities (2) are valid for the processes with a finite and 

infinite number of states. 

Suppose that , , 1,n u n n u n u        and / 1.n n n     For the birth-death 

process described by the state graph shown in Figure 2, the following equations 

hold: 
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where 1/( )n n nT  ɶ    is the mean time spent in the group of states (n+1,n+2,...). 
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Fig. 2. Transition graph for the birth-death process with the same transition intensities 

starting from the state n 

Consistently expressing 0kT  through 1,0nT   for {1,2,..., },k n  we obtain the 

equalities 
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3. The birth-death process with a finite number of states 

For the birth-death process with a finite number of states, described by the state 

graph shown in Figure 3, we have the equations 
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Thus, in this case we obtain 
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For the birth-death process with a finite number of states, the following equa-

tions hold: 
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Here kp  is the steady-state probability of the system being in the state .k  Thus,  

we have 
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Fig. 3. Transition graph for the birth-death process with a finite number of states 

Since the steady-state probability kp  is the relative average time, the stationary 

process stays in the state ,k  then 
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where kT  and ( )out kT  is the mean time the process stays in the state k  and outside 

the state ,k  respectively. From (8) and (9) we obtain 
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Let us denote by ( )out kT   and ( )out kT   the mean time that the process stays in the 

group of states (0,1,..., 1)k   to the left from state k  and in the group of states 

( 1, 2,..., )k k r   to the right from state ,k  respectively. It is obvious that 
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Let us derive a formula for ( )out kT   using the auxiliary state graph shown  

in Figure 4. 
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Fig. 4. Transition graph used to obtain a formula for ( )out kT   

Taking into account (8), we can write 
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and for the process, described by the state graph shown in Figure 3, we obtain  

the formulas 
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Equalities (13) are valid for the processes with a finite and infinite number of 

states. 

Let us derive a formula for ( )out kT   using the auxiliary state graph shown in  

Figure 5. 
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Fig. 5. Transition graph used to obtain a formula for ( )out kT   

Considering (8), we have 
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and for the process, described by the state graph shown in Figure 3, we derive  

the formulas 
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For the process with an unlimited number of states, relations (15) can be written as 

 ( )

1
( , ), 0.out k

s kk

T P k s k





 
 (16) 

Using equalities  
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that follow from the properties of the Markov process, we obtain the following 

formulas 
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Equalities (18) are valid for the processes with a finite and infinite number of 

states.  

Using formulas (18), we obtain simpler expressions for i jT  and j iT  than we 

have in (2) and (6): 
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4. The Erlang loss queueing system 

The Erlang loss model is usually used to obtain the number a telephone network 

links. In the paper [8] this model is applied for describing in-patient flow through  

a hospital ward. 

For the Erlang loss queueing system (see Fig. 6), changing the number of busy 

servers is a birth-death process with a finite number of states and the following 

values of the transition intensities  

 0 , , , 1 .k k k k n           (20) 
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Fig. 6. Transition graph for the loss queueing system 

In this case, formulas (10), (13), (15) and (19) can be written as 
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where / .    

For practical applications, it is important to know the average system availability 

time ( ) ,out nT  when at least one server is free, the mean busy period (0) ,outT  and the 

values of 0nT  and 0 .nT  

For the case of unlimited number of servers ( )n , equalities (21) can be 

written as 
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5. Queueing systems with finite and infinite waiting room 

For the queueing system with a finite waiting room capacity (see Fig. 7), the 

number of customers in the system is a birth-death process with a finite number of 

states and the following values of the transition intensities 
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Fig. 7. Transition graph for the queueing system with finite waiting room capacity 

Let us denote /( ),n    then, using (2), (6), (10), (13), (15) and (19), we  

obtain 
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Those of equalities (24)-(25) which do not contain r  remain valid for the 

queueing system with an infinite waiting room capacity for which we assume that 

1.  In other cases, we need to calculate the limit as ,r   and we obtain 
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For practical applications, it is important to know the average system availability 

time ( ) ,out rT  the mean busy period (0) ,outT  and the values of 0rT  and 0.rT  

6. Series recoverable system with redundancy and repair facilities 

Let us consider a Markov model for studying the reliability of series systems 

with redundancy and repair facilities.  

Consider a system that consists of r m c   identical units, namely, m  main 

operating units and c  unloaded redundant units. The main units are connected in  

a series. The system stops functioning in normal mode at the moment when the 

number of failed units reaches 1.c   Assume that those 1m   units that were  

serviceable at the moment of system failure, in idle time during recovery, continue 

to operate and may fail. Let us suppose that the number n  of repair facilities is  

restricted ( ),n c  so failed units can form a queue for recovering.  
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Let us denote states by natural numbers 0, 1, 2, ..., where the number of a state 

corresponds to the number of failed units. Then the state graphs have the form 

shown in Figure 8. 
 

( 1)
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Fig. 8. Transition graph for the series system with redundancy and repair facilities 

The number of failed units is a birth-death process with a finite number of states 

and the following values of the transition intensities 
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Here   and   are the parameters of exponential distributions of the time to 

failure and the recovery time respectively. For this system, the time to failure SX  

and the time between failures SXɶ  do not coincide, because the time interval SX  

begins at the moment of transition from state 1 to state 0, and the time SXɶ  begins 

at the moment of transition from state c+1 to state c. Both states end simultaneous-

ly at the moment of transition from the state c to the state c+1. The downtime SIX  

is the time spent in a group of states ( 1,..., ).c r  

With the help of (13) and (15), we obtain 
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Using expressions (29) and equalities (19), we can derive formulas for i jT  and 

, 0 .j iT i j r    We present only formulas for the mean values 0, 1( ) ,S cE X T   

, 1( )S c cE X T ɶ  and ( )( ) :SI out cE X T   
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 (30) 

7. Conclusions 

Using the exponential distributions properties and peculiarities of the Markov 

process we have established a connection between the transition times between the 

states of the birth-death process and the times spent in the group of states. This in-

dicates an easy method to get formulas for average “travel” times between the 

states of this process. 

The obtained formulas can be used to test simulation models [9, 10] built to cal-

culate the characteristics of various stochastic systems. The constructed simulation 

models can be used for systems with non-exponential distributions. 
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