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Abstract. In this study, thermal and mechanical stresses in hollow thick-walled functionally 

graded (FG) cylinders is presented under the convection boundary condition. The convective 

external condition and constant internal temperature in hollow cylinders are investigated.  

Inhomogeneous material properties produce irregular and two-point linear boundary value 

problems that are solved numerically by the pseudospectral Chebyshev method. The dis-

placement and thermal stress distributions are examined for two different material couples 

under particular boundary conditions that are similar to their real engineering applications. 

Results have demonstrated that the pseudospectral Chebyshev method has low computation 

costs, high accuracy and ease of implementation and can be easily customized to such engi-

neering problems. 
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Nomenclature 

� inner radius �� circumferential stress � outer radius �� axial stress � thermal conductivity � pressure � thermal expansion coefficient 	 temperature distribution ℎ thermal convection coefficient 	� ambient temperature � Chebyshev differentiation matrix 	 wall temperature � Young’s modulus � internal heat generation �� initial heat generation �� radial strain � radial coordinate �� circumferential strain � radial displacement �, � Lame coefficients �� radial stress �� inhomogeneity parameters (� = 1, 2, 3) 
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1. Introduction 

Functionally graded materials (FGMs) are innovative composite materials whose 
thermal and mechanical properties vary smoothly from one surface to the next. They 
offers many benefits, including better thermal characteristics, increased material 
strength, improved residual stress distribution, high fracture toughness, and rela-
tively low in plane and transverse stresses. The FGM thick-walled cylinder is widely 
utilized in many industries for delivering and reserving fluids under pressure and 
temperature loads, including power/chemical plants, aerospace, biomedical, petro- 
leum, and others. FGMs have been the subject of a substantial amount of research [1]. 

In the past several decades, functionally graded materials have also played  
an important role in the design of cylindrical structures. Many of the studies deal 
with temperature, displacement and stress distribution of functionally graded hollow 
cylinders with different solution procedures. The solution methods used in the liter-
ature can be listed as: the perturbation method [2], the direct method [3], a novel 
limiting approach [4], generalized Bessel function and Fourier integral [5], Fredholm 
integral equation [6], a tolerance averaging approach [7], Differential quadrature 
method [8], representative volume element [9], the multilayer semi-analytical method 
[10], complementary functions method [11], the direct method and finite element 
method [12], an approximate method for a cylinder divided into N layers [13],  
the non-linear shooting method and the Runge-Kutta fourth-order algorithm [14]. 

This paper deals with thick-walled hollow cylinders that are graded with two  
different material couples. Material distribution is assumed to vary an exponential 
function in the radial direction. Systems of linear ordinary differential equations  
with variable coefficients have been solved numerically with the pseudospectral 
Chebyshev method. Differentiation matrices that signify the approximations at grid 
points play an important role in the implementation of spectral collocation methods 
[15]. The constructing procedure of Chebyshev differentiation matrices with the help 
of Chebyshev points (grid points) is found in Fornberg [16] and the implementation 
for the numerical solution of a convection-diffusion problem in Bazan [17].  
The method is used to generate results for the temperature, displacement, and thermal 
stress distributions.  

2. Mathematical formulation of the problem 

Temperature, displacement and stress analysis of a one-dimensional axisymmetric 
functionally graded cylindrical body is considered. A thick-walled hollow cylinder 
subjected to steady-state thermal and mechanic loads is investigated. The modulus 
of elasticity, heat conduction coefficient, the linear thermal expansion coefficient 
and Poisson’s ratio of the body are assumed to be graded exponentially in the radial 
direction as follows:  

���� = ��  �!��"#�$"# ,   ���� = ��  �&��"#�$"# ,   ���� = ��  �'��"#�$"# , 
 

 (��� = (�  )*�+,-�
.,-   (1) 
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Here, subscript �, ��, � = 1, 2, 3, 4, �, � and � represent metal constituents,  

inhomogeneity parameters, radial coordinates, inner and outer radius, respectively. 

Temperature distribution of the FG cylinder in a steady-state condition with  

internal heat generation is described by the axisymmetric heat conduction equation 

[18] as follows: 

1
�  0� ���� 	1���21 + � = 0 (2) 

where the prime refers to the derivative with respect to �, and 	��� is the temperature 

in the radial direction. Under the assumption of no internal heat generation, substi-

tuting the exponential form of the heat conduction coefficient (1) into Eq. (2) renders 

the heat conduction equation in the following form: 

	11 + 5 �6� − � + 1
�8 	1 = 0 (3) 

with a uniform inner surface temperature and convective outer surface that is ex-

posed to an airstream (ℎ9 = 20 W/m2·K) 

	��� = 	 ,   :��  ;	
;� + ℎ9�	 − 	��<�=$ = 0 (4) 

The governing equation for the stress field of the cylindrical body consists of 

strain-displacement equations 

�� = ;�
;� ,   �� = �

�  (5) 

stress-strain-temperature relations 

 �� = ����� + 2������� + ��� − �3���� + 2���������	���   (6a) 

 �� = ����� + 2������� + ������ − �3���� + 2���������	��� (6b) 

 �� = ������� + ��� + −�3���� + 2���������	��� (6c) 

and stress equilibrium equation 

;��;� + �� − ��� = 0. (7) 

Here, ��, ��, �� represent the radial, hoop and axial stress, and ��, �� are the 

strain tensors. Lame coefficients, ���� and ���� are related to the modulus of elas-

ticity ���� and Poisson's ratio ( in the following way: 

���� = (��� ����
01 + (���201 − 2(���2 ,   ���� = ����

201 + (���2 (8) 
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Substituting Eqs. (5)-(6) into the equilibrium Eq. (7), by using Lame coefficients 

(8) with the exponential form of the modulus of elasticity and the linear thermal 

expansion coefficient (1) renders the linear non-homogeneous ordinary differential 

equation (ODE) in terms of radial displacement, � as follows: 

 ��� + ������ + ����� = 
��� (9) 

where 

���� = �� + 2�
� + 2 + 1

� (10a)

���� = ��
� + 2

1
� − 1

�� (10b)


��� = � ����������� �� 3�� + 2�
� + 2 + 1 + �

1 − �
 !" − #$ % + 1 + �

1 − � %′'. (10c)

3. Numerical resolution of the problem 

In the pseudospectral Chebyshev method, a solution is made in the interval  

determined in the problem. The mesh points that will keep the error to a minimum 

are selected and the interpolation polynomial at these points is found. In order to 

obtain high precision solutions by using fewer points in the solution of the problem, 

Chebyshev Gauss-Lobatto points, which contain a more dense point distribution at 

the boundary points compared to the midpoints, are preferred. These points are 

equally spaced on the semicircle in accordance with the equation below.  

�) = cos -./
0 1,   �. = 0,1, … , 0� (11)

Since they are projected on the horizontal axis, they form a distribution that is 

dense at the borders and sparse at the midpoints. Thus, high precision solutions can 

be obtained with fewer grid points. 

The pseudospectral Chebyshev Model is utilized to perform the thermal stress 

analysis of FG hollow cylinders under the convective boundary condition by refer-

ring to the study of Trefethen [15], Fornberg [16] and Gottlieb [19] that depends on 

discretization of the governing equations (3), (9), (12), (15) with respect to the spatial 

variable using the pseudospectral Chebyshev method. With regard to collocation 

points, the first order �0 + 1�5�0 + 1� Chebyshev differentiation matrix will be  

obtained and denoted by D. First-order Chebyshev differentiation matrix 6 provides 

highly precise approximation to ��7�)8, %�7�)8, ���7�)8, %��7�)8 ..., simply by multi-

plying the differential matrix with vector data ��7�)8 = �6 ��), %′7�)8 = �6 %�), 
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�′1R��S = ��6 ���, 	′′R��S = ��6 	�� suchlike where T = 0��, … , �U2V and W = 

= 0	�, … , 	U2V discrete vectors data at positions ��. 

The computation procedure of the Chebyshev differentiation matrix and codes  

as an �-file can be found in notable references see e.g. [15], where the collocation 

points �� are numbered from right to left and defined in 0−1,12. With a small revision, 

the method can be implemented to any interval.  

The detailed implementation of the method is explained in the study of Trefethen 

[15] and Bazan [17]. Therefore, the linear axisymmetric heat conduction equation 

for the cylinder (3) is simply converted into a linear system by using the pseudo- 

spectral Chebyshev collocation method as follows: 

 XVW = Y (12) 

where 

XV = �6 + 5 �6� − � + 1
�8 �. (13)

Boundary conditions for temperature (11) are imposed to this linear system (12) 

by only replacing the first and last row of the system matrix XV with the appropriate 

values and the corresponding BZ[V values. Then the nondimensional temperature 

field can be found by solving the linear system (12) by any decomposition method. 

After that, the linear non-homogeneous ordinary differential equation (9) in terms of 

dimensionless radial displacement is converted into a linear system in the following 

way: 

 X\T = B��� (14) 

where 

 X\ = �6 + ����� + A���. (15) 

4. Results and discussion  

Cylindrical components can be exposed by a variety of mechanical and thermal 

effects. In the present study, a hollow thick walled FG cylinder with an inner radius � = 1 m and outer radius � = 1.2 m is examined. It is presumed that the cylinder is 

exposed to internal pressure ���� = –50 MPa and constant internal temperature 	 = 50℃. The ambient temperature is set to be 	� = 25℃. Materials are listed in 

Table 1 with their properties. Using the relations in Eq. (1) and the material proper-

ties in Table 1, the inhomogeneity parameters �], �6, �G and �^ are calculated so 

that the inner wall of the cylinder is pure metal and the outer wall is pure ceramic 

and shown in Table 2.  
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Table 1. Properties of material couples (MC) 

 Material � [GPa] � [W/mK] � [10–6 K–1] _ 

X ]̀ 
Silicon Nitride 348.43 1.209 5.8723 0.24 

Nickel 199.5 90.7 13.30 0.3 

X`6 
Mullite 225 5.90 4.7 0.27 

Molybdenum 330 138 4.9 0.3 

Table 2. Inhomogeneity parameters for MC’s 

 �] �6 �G �^ 

X ]̀ 0.5576 –4.3177 –0.8175 –0.2231 

X`6 –0.3830 –3.1523 –0.0417 –0.1054 

 
As an initial step to the analysis, grid independence tests are conducted for the 

cylinder and presented in Table 3. It is noted that the spectral procedure is capable 

of attaining 6, 8, 10 digit precision by picking 11, 13, 15 collocation points, respec-

tively. Therefore, 11 (a = 10 interval) collecting points are used in all analyses con-

ducted in this study.  

In addition to these analyses, the results are compared with the study of (Jabbari 

et al. [3]) for the same form of the FG hollow cylindrical object with the same values 

of material properties. The results are presented in Table 4. The compared results 

show that the proposed numerical solution procedure adequately provides seven-

digit accuracy by using only nine collocation points. 

Results of two different combinations with and thermal convection are examined 

graphically in Figure 1. The figure consists of four subfigures that show temperature, 

radial displacement, as well as radial and circumferential stresses called �, �, b and ; respectively. 

Table 3. Grid independence tests in the middle point of FG hollow cylinder wall (at � = 1.1 m) 

    Cylinder 

Number of interval W/Wd T 

2 0.9994105160 0.0019534844 

4 0.9992357939 0.0019112216 

6 0.9992524141 0.0019103517 

8 0.9992525121 0.0019103411 

10 0.9992525138 0.0019103410 

12 0.9992525138 0.0019103410 

14 0.9992525138 0.0019103410 

16 0.9992525138 0.0019103410 
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The effect of two different material pairs, X ]̀, X`6 on a hollow FG cylinder  

is monitored in Figure 1. Due to the lower ambient temperature and convective 

boundary conditions, the temperature of the outer surface is lower compared to the 

inner surface (Fig. 1a). X ]̀ reaches a lower temperature value than X`6 at the outer 

radius in Figure 1a. Its clearly seen from Figure 1b that lower radial displacement 

occurs in X`6. This is the result of choosing the inhomogeneity parameter as nega-

tive for the Young’s modulus in the grading of X`6. It is also due to the choice of 

Young’s modulus closer to each other and relatively higher in grading material used 

in pairs.  
 

   
 (a) Temperature (b) Radial displacement 

   
 (c) Radial stress distribution (d) Circumferential stress distribution 

Fig. 1. The dimensionless temperature, radial displacement, and radial and circumferential 

stress distributions of hollow FGM cylinder for materials X ]̀ and X`6 

In Figure 1c, radial stress in the direction of compression and X`6 has lower 

values than X ]̀ in any point of wall thickness. On the outer radius, radial stress 

reduces to zero due to the traction free boundary condition. Although the circumfer-

ential stress is lower for X ]̀ in the inner wall, it reverses on the outer wall, and X`6 

reaches lower stress value. Both X`e meet the same circumferential stress value 

around the wall midpoint. It can be concluded that X`6 is relatively suitable due to 

keeping circumferential stress stable along the wall thickness.  
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5. Conclusions 

In this study, thermal and mechanical stresses in a hollow thick-walled cylinder 

made of FGM under the effect of thermal convection coefficient is presented. All 

material properties are assumed to vary exponentially in the  radial direction. These 

inhomogeneous material properties produce an irregular and variable coefficient 

two-point linear boundary value problem. This linear boundary value problem is 

solved numerically by the pseudospectral Chebyshev method. Benchmark solutions 

are used to verify the temperature, displacement and stress distributions in the form 

of tables. Results agree with the study of Jabbari et al. [3]. Furthermore, grid inde-

pendence tests are conducted to emphasize the convergence of the numerical solu-

tions. In the analysis, two different ceramic and metal mixtures are used as special 

materials. The effect of the two different mixtures and thermal convection on tem-

perature, displacement and stresses are discussed extensively. In addition, the pseu-

dospectral Chebyshev method used in this study, based on the definition of spatial 

fields using Chebyshev polynomials with grid density at the boundaries, is a method 

in which derivatives are calculated with high accuracy using very few collocation 

points. Therefore, this method has high accuracy, low calculation costs and ease of 

application and can be easily adapted to such engineering problems. 
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