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Abstract. The study of the solution’s existence and uniqueness for the linear integro-
differential Fredholm equation and the application of the Nyström method to approximate
the solution is what we will present in this paper. We use the Neumann theorem to construct
a sufficient condition that ensures the solution’s existence and uniqueness of our problem in
the Banach space C1[a,b]. We have applied the Nyström method based on the trapezoidal
rule to avoid adding other conditions in order to the approximation method’s convergence.
The Nyström method discretizes the integro-differential equation into solving a linear
system. Only with the existence and uniqueness condition, we show the solution’s existence
and uniqueness of the linear system and the convergence of the numerical solution to the
exact solution in infinite norm sense. We present two theorems to give a good estimate of the
error. Also, to show the efficiency and accuracy of the Nyström method, some numerical
examples will be provided at the end of this work.
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1. Introduction

The importance of the integro-differential equations is clearly demonstrated
in physics, mathematical modelling, chemistry, biology, engineering, etc. [1–4].
This has led to the presence of different types and forms of equations. Therefore,
an approximation and numerical processing is necessary. Most of the equations found,
used and studied are the equations where the derivative of the unknown function
is outside the integral sign, and scientists have built several methods to estimate
the solution like the Homotopy perturbation method [5], Fractional order opera-
tional matrix methods the Adomain decomposition method [6] and another method
using Legendre scaling functions [7,8], Embedded pseudo-Runge-Kutta methods [9],
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Volterra-Runge-Kutta method [10], the iterative variational method [11] and the pro-
jection methods [12].

Contrary to existing reasearch, the numerical method that we will present in this
article is the Nyström method. However, this method was applied in the first state
to approximate the solution of an integral equation and its theoretical framework is
well given by Atkinson and Han in [13]. Recently, many others have relied on this
method such as H. Guebbai et al. in [14, 15], H. Zhou and Q. Wang [16], S. Segni
et al. [17], M. Ghiat et al. [18], S. Salah et al. [19], Lemita and Guebbai [20]: to
give an estimation solution of the non-linear integro-differential Volterra equation
with a continuous kernel, or a weakly singular kernel [21, 22] or to approximate
a solution of a Fredholm linear system.

Our objective is to treat a new type of Fredholm integro-differential equation
where the derivative is inside the integral sign. We construct an approximate solu-
tion based on the Nyström method, especially since this method in general is used
for solving integral equations numerically. We focused on the study of this equation
on two sides; the analytical and numerical side.

Let u ∈C1[a,b] be a solution of the following linear Fredholm integro-differential
equation:

∀x ∈ [a,b], λu(x) =
∫ b

a
K1(x, t)u(t) dt +

∫ b

a
K2(x, t)u′(t) dt + f (x), (1)

where λ 6= 0 is a complex parameter, f ∈C1[a,b] and Ki, for i = 1,2 are given func-
tions. We construct some conditions that ensures solution’s existence and uniqueness
of equation (1). We prove that those conditions are compatible with the Nystöme
approximation method.

2. Analytical study

In the starting point of our work, we construct a condition that ensures the
existence and uniqueness of the solution. Let X = C1[a,b] be a Banach space with
the norm:

∀v ∈ X , ||v||X = max
a≤x≤b

|v(x)|+ max
a≤x≤b

|v′(x)|.

We suppose that Ki, for i = 1,2 satisfied the next assumption:

(H1)

∂Ki

∂x
(x, t) ∈C0([a,b]2,R),

max
a≤x,t≤b

(
|Ki(x, t)|,

∣∣∣∣∂K
∂x i

(x, t)
∣∣∣∣)≤Mi.
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Using this assumption to define the linear operator T by:

T : X −→ X

v 7−→ T v(x) =
∫ b

a
K1(x, t)v(t) dt +

∫ b

a
K2(x, t)v′(t) dt, ∀x ∈ [a,b]. (2)

It is clear that,

∀x ∈ [a,b], (T v)′(x) =
∫ b

a

∂K1

∂x
(x, t)v(t) dt +

∫ b

a

∂K2

∂x
(x, t)v′(t) dt. (3)

Then, the derivative u′ is given implicitly by

∀x ∈ [a,b], λu′(x) =
∫ b

a

∂K1

∂x
(x, t)u(t) dt +

∫ b

a

∂K2

∂x
(x, t)u′(t) dt + f ′(x). (4)

Theorem 1 Under the assumption (H1) and if |λ | > 2(b− a)(M1 +M2), then the
equation (1) has a unique solution in X. 2

PROOF To prove the solution’s existence and uniqueness for (1), we write it under
the form

(λ I−T )u = f . (5)

We will demonstrate that (λ I−T )−1 exists and is bounded. First of all, we define
||T || by

||T ||= sup
||u||X≤1

||Tu||X . (6)

Such that,

||Tu||X = max
a≤x≤b

|Tu(x)|+ max
a≤x≤b

|(Tu)′(x)|. (7)

However, we have

|Tu(x)| ≤
∫ b

a
|K1(x, t)| |u(t)| dt +

∫ b

a
|K2(x, t)| |u′(t)| dt,

≤ (b−a)M1 max
a≤t≤b

|u(t)|+(b−a)M2 max
a≤t≤b

|u′(t)|,

≤ (b−a)(M1 +M2)||u||X , (8)

and

|(Tu)′(x)| ≤
∫ b

a
|∂K1

∂x
(x, t)| |u(t)| dt +

∫ b

a
|∂K2

∂x
(x, t)| |u′(t)| dt,

≤ (b−a)M1 max
a≤t≤b

|u(t)|+(b−a)M2 max
a≤t≤b

|u′(t)|,

≤ (b−a)(M1 +M2)||u||X . (9)
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Substituting (8) and (9) in (7), we obtain

||Tu||X ≤ 2(b−a)(M1 +M2)||u||X , (10)

which implies that,

||T || ≤ 2(b−a)(M1 +M2). (11)

Using the fact that |λ |> 2(b−a)(M1+M2), we get ||T ||< |λ |. Therefore, according
to theorem 1.2.11 in [23] sp(T )⊆ B(0, ||T ||), where sp(T ) is the spectrum set of T .
Then {

λ ∈ C∗, |λ |> 2(b−a)(M1 +M2)

}
⊆ re(T ),

where, re(T ) is the resolvant set of T . We select the Nuemmann’s theorem [24] to
confirm that (λ I− t)−1 exists and

||(λ I−T )−1|| ≤ 1
|λ |− ||T ||

≤ 1
|λ |−2(b−a)(M1 +M2)

. (12)
�3. Numerical study

To search for an approximation solution of the system (1) and (4), we use the
Nyström method which is based on the following numerical integration scheme:

∀n≥ 1, ∀φ ∈C0[a,b],
∫ b

a
φ(x) dx≈

n

∑
i=0

ωiφ(xi), (13)

where, {ωi}0≤i≤n called quadrature weights such that W = sup
n≥1

n

∑
i=0
|ωi|< ∞,

h =
(b−a)

n
and xi = a+ ih, for i = 0,1,2, . . . ,n, are points discretization of the inter-

val [a,b].
Applying (13) to the integral term of the system (1)-(4), we obtain

λu(x) =
n

∑
j=0

ω jK1(x,x j)u(x j)+
n

∑
j=0

ω jK2(x,x j)u′(x j)+ f (x)+ e1,n(x),

λu′(x) =
n

∑
j=0

ω j
∂K1

∂x
(x,x j)u(x j)+

n

∑
j=0

ω j
∂K2

∂x
(x,x j)u′(x j)+ f ′(x)+ e2,n(x),

where, local errors are given by:

e1,n(x) =
∫ b

a

[
K1(x, t)u(t)+K2(x, t)u′(t)

]
dt

−
n

∑
j=0

ω j

[
K1(x,x j)u(x j)−K2(x,x j)u′(x j)

]
, (14)
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e2,n(x) =
∫ b

a

[
∂K1

∂x
(x, t)u(t)+

∂K2

∂x
(x, t)u′(t)

]
dt

−
n

∑
j=0

ω j

[
∂K1

∂x
(x,x j)u(x j)−

∂K2

∂x
(x,x j)u′(x j)

]
. (15)

We set x = xi and we suppose that ∀x ∈ [a,b], {ep,n(x)}1≤p≤2 are negligible to get
the following linear approximation system with 2n+2 equations:

λui =
n

∑
j=0

ω jK1(xi,x j)u j +
n

∑
j=0

ω jK2(xi,x j)u′j + fi,

λu′i =
n

∑
j=0

ω j
∂K1

∂x
(xi,x j)u j +

n

∑
j=0

ω j
∂K2

∂x
(xi,x j)u′j + f ′j,

(16)

where fi = f (xi), f ′i = f ′(xi) and ui,u′i are the approximations of u(xi) and u′(xi)
respectively.

3.1. System analysis

Theorem 2 If |λ |> 2 W (M1 +M2), then the system (16) has a unique solution. 2

PROOF To demonstrate the existence of the system solution (16), we apply
the Banach fixed point theorem. For this reason, we write the system (16) in the
following form:

U = A[U ].

where, U = (u0,u1, . . . ,un,u′0,u
′
1, . . . ,u

′
n)

t is a vector of R2n+2 and

A[U ] =



1
λ

[ n

∑
j=0

ω jK1(xi,x j)u j +
n

∑
j=0

ω jK2(xi,x j)u′j + fi

]
, 0≤ i≤ n,

1
λ

[ n

∑
j=0

ω j
∂K1

∂x
(xi−n−1,x j)u j +

n

∑
j=0

ω j
∂K2

∂x
(xi−n−1,x j)u′j + f ′i

]
, n+1≤ i≤ 2n+2.

For R2n+2, we use the following norm:

||U ||R2n+2 = max
0≤i≤n

|ui|+ max
0≤i≤n

|u′i|.

Let U and V ∈ R2n+2, then

||A[U ]−A[V ]||R2n+2 ≤
2 W (M1 +M2)

|λ |
||U−V ||R2n+2 ,
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Using the fact that |λ | > 2 W (M1 +M2) and the Banach fixed point theorem, we
conclude that the system (16) has a unique solution. �

3.2. Error analysis

Our goal is to choose a numerical quadrature that provides that the error estimation
converges to 0. We select the formula of trapezoidal rules to ensure this convergence,

see [13] and [25]. It also provides
n

∑
j=0
|ω j|= (b−a), which makes the analytical and

numerical study compatible. In this rule, we have ∀ n≥ 1

h =
(b−a)

n
,

ω0 = ωn =
h
2

,

ω1 = ω2 = · · ·= ωn−1 = h,
xi = a+(i−1)h, i = 0,1, . . . ,n.

First, we define the continuity module κ0 by

∀ h > 0, ∀ v ∈C0[a,b], κ0(v,h) = sup
|x−y|≤h

|v(x)− v(y)|,

and the continuity module κ1 as follows

∀ h > 0, ∀ v ∈C1[a,b], κ1(v,h) = κ0(v,h)+κ0(v′,h),

Theorem 3 Let en =

(
e1,n(x0),e1,n(x1), . . . ,e1,n(xn),e2,n(x0),e2,n(x1), . . . ,e2,n(xn)

)t

be a vector in R2n+2, then:

||en||R2n+2 ≤ (b−a)
2

∑
p=1

Mp

[
max
0≤i≤n

κ1(Kpxi
,h)||u||X +2 κ1(u,h)

]
, (17)

where, Kpxi
= Kp(xi, .), for p = 1,2 and i = 0,1, . . . ,n. 2

PROOF For i = 0,1, . . . ,n, we have

|e1,n(xi)| =

∣∣∣∣n−1

∑
j=0

∫ x j+1

x j

K1(xi, t)u(t) dt− h
2

[
K1(xi,x j+1)u(x j+1)+K1(xi,x j)u(x j)

]
+

∫ x j+1

x j

K2(xi, t)u′(t) dt− h
2

[
K2(xi,x j+1)u′(x j+1)+K2(xi,x j)u′(x j)

]∣∣∣∣,
|e2,n(xi)| =

∣∣∣∣n−1

∑
j=0

∫ x j+1

x j

∂K1

∂x
(xi, t)u(t) dt− h

2

[
∂K1

∂x
(xi,x j+1)u(x j+1)+

∂K1

∂x
(xi,x j)u(x j)

]
+

∫ x j+1

x j

∂K2

∂x
(xi, t)u′(t) dt− h

2

[
∂K2

∂x
(xi,x j+1)u′(x j+1)+

∂K2

∂x
(xi,x j)u′(x j)

]∣∣∣∣.
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But for all t ∈ [x j,x j+1],∣∣∣∣∫ x j+1

x j

K1(xi, t)u(t) dt− h
2

[
K1(xi,x j+1)u(x j+1)+K1(xi,x j)u(t j)

]∣∣∣∣
≤ h

[
max
0≤i≤n

κ0(K1xi
,h)||u||X +M1κ0(u,h)

]
,

∣∣∣∣∫ x j+1

x j

K2(xi, t)u′(t) dt− h
2

[
K2(xi,x j+1)u′(x j+1)+K2(xi,x j)u′(x j)

]∣∣∣∣
≤ h

[
max
0≤i≤n

κ0(K2xi
,h)||u||X +M2κ0(u′,h)

]
,

∣∣∣∣∫ x j+1

x j

∂K1

∂x
(xi, t)u(t) dt− h

2

[
∂K1

∂x
(xi,x j+1)u(x j+1)+

∂K1

∂x
(xi,x j)u(x j)

]∣∣∣∣
≤ h

[
max
0≤i≤n

κ0

(
∂K1xi

∂x
,h
)
||u||X +M1κ0(u,h)

]
,

∣∣∣∣∫ x j+1

x j

∂K2

∂x
(xi, t)u′(t) dt− h

2

[
∂K2

∂x
(xi,x j+1)u′(x j+1)+

∂K2

∂x
(xi,x j)u′(x j)

]∣∣∣∣
≤ h

[
max
0≤i≤n

κ0

(
∂K2xi

∂x
,h
)
||u||X +M2κ0(u′,h)

]
.

Which gives

|e1,n(xi)| ≤ (b−a)
[

M1 max
0≤i≤n

κ0(K1xi
,h)+M2 max

0≤i≤n
κ0(K2xi

,h)
]
||u||X

+ (b−a)(M1 +M2)κ1(u,h),

|e2,n(xi)| ≤ (b−a)
[

M1 max
0≤i≤n

κ0

(
∂K1xi

∂x
,h
)
+M2 max

0≤i≤n
κ0

(
∂K2xi

∂x
,h
) ]
||u||X

+ (b−a)(M1 +M2)κ1(u,h).

Finally

max
0≤i≤n

|e1,n(xi)|+ max
0≤i≤n

|e2,n(xi)|

≤ (b−a)
[

M1 max
0≤i≤n

κ1(K1xi
,h)+M2 max

0≤i≤n
κ1(K2xi

,h)
]
||u||X

+2(b−a)(M1 +M2) κ1(u,h).

Then

||en||R2n+2 ≤ (b−a)
2

∑
p=1

Mp

[
max
0≤i≤n

κ1(Kpxi
,h)||u||X +2 κ1(u,h)

]
. �
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To demonstrate the effectiveness of our applied method and to prove the conver-
gence of the approached solution, we will state the following theorem:

Theorem 4 Let εn, the error defined by:

εn = max
0≤i≤n

|u(xi)−ui|+ max
0≤i≤n

|u′(xi)−u′i|, (18)

Assuming that |λ |> 2(b−a) (M1 +M2). Then lim
n→∞

εn = 0. 2

PROOF we have

|λ | |u(xi)−ui| ≤ |e1,n(xi)|+(b−a)(M1 +M2)εn, (19)

|λ | |u′(xi)−u′i| ≤ |e2,n(xi)|+(b−a)(M1 +M2)εn. (20)

For (19)-(20), we obtain:

εn ≤
b−a

|λ |−2(b−a)(M1 +M2)
||en||R2n+2 . (21)

When n→ ∞, h =
b−a

n
→ 0 and by theorem (3) lim

n→∞
||en||R2n+2 = 0, then

lim
n→∞

εn = 0. �

4. Numerical examples

To show the effectiveness of the suggested methods, we apply this approach to the
following numerical example:

∀x ∈ [0,1], λu(x) =
∫ 1

0

u(t)√
2+ t3 + 1

1+x

dt +
∫ 1

0

u′(t)
x+ t4 +1

dt + f (x), (22)

where, λ = 4, u(x) = x2 and

f (x) = 4x2−
arctan

( 1√
x+1

)
√

x+1
− 2

3

(√
3+

1
1+ x

−
√

2+
1

1+ x

)
. We also have

max
0≤x,t≤1

(
|K1(x, t)|,

∣∣∣∣∂K1

∂x
(x, t)

∣∣∣∣) ≤ 4
5

and max
0≤x,t≤1

(
|K2(x, t)|,

∣∣∣∣∂K2

∂x
(x, t)

∣∣∣∣)≤ 1.

Then, |λ |= 4 >
18
5
.

We give another example

∀x ∈ [0,1], λu(x) =
∫ 1

0

u(t)
ex + et dt +

∫ 1

0

u′(t)
1+ x+ e2t dt + f (x), (23)

where, λ = 2, u(x) = ex and
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Table 1. The error between the exact and approximation solution of equation (22)

n 10 100 500 1000
max

0≤i≤n
|u(xi)−ui| 7.0610e-05 7.0506e-07 2.8202e-08 7.0505e-09

max
0≤i≤n

|u′(xi)−u′i| 1.6370e-04 1.6353e-06 6.5410e-08 1.6352e-08

εn 2.3431e-04 2.3403e-06 9.3612e-08 2.3403e-08
time (seconds) 0.023258 0.049113 0.774680 3.641881

f (x) = log(ex +1)− log(e1 +ex)+2ex−arctan(
e1
√

x+1
)−

arctan( 1√
x+1

)
√

x+1
. We prove

that

max
0≤x,t≤1

(
|K1(x, t)|,

∣∣∣∣∂K1

∂x
(x, t)

∣∣∣∣) ≤ 1
3

and max
0≤x,t≤1

(
|K2(x, t)|,

∣∣∣∣∂K2

∂x
(x, t)

∣∣∣∣)≤ 1
2
.

Then, |λ |= 2 >
10
6
.

Table 2. The error between the exact and approximation solution of equation (23)

n 10 100 500 1000
max

0≤i≤n
|u(xi)−ui| 1.0479e-04 1.0468e-06 4.1871e-08 1.0468e-08

max
0≤i≤n

|u′(xi)−u′i| 5.8898e-05 5.8873e-07 2.3549e-08 5.8873e-09

εn 1.6368e-04 1.6355e-06 6.5420e-08 1.6355e-08
time (seconds) 0.071628 0.048551 0.502111 3.834747

We applied the method proposed to approximate the solution of (22) and (23), and
we calculated the error between the approximation and exact solution which is given
by:

εn = max
0≤i≤n

|u(xi)−ui|+ max
0≤i≤n

|u′(xi)−u′i|.

Table 1 presented the numerical results of equation (22) and Table 2 presented
the numerical results of equation (23).

For better observation on the effectiveness of our proposed method, we plot the
approximate and exact solutions of (22) in Figure 1 and the approximate and exact
solutions of (23) in Figure 2 in different collocation points xi. Figures 1 and 2 clearly
prove the accuracy of our numerical method proposed in this paper.

5. Conclusion

In this article, we have studied a a different integro-differential equation than the
existing ones. We proposed the Nyström technique to obtain an approach solution of
linear Fredholm integro-differential equation. This method helped us to reformulate
an equation to a linear system by block. Before applying this estimation, we posed
some assumptions at the beginning to provide the existence and uniqueness of the
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Fig. 1. The approximate and exact solutions with the Nyström method for equation (22), n = 50
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Fig. 2. The approximate and exact solutions with the Nyström method for equation (23), n = 50

solution on the one hand and on the other hand, to affirm that the approximate solution
converges to the exact solution in the space C1[a,b]. We have constructed an error
bound of the Nyström method for a function in C1[a,b]. At the end, the comparison
of the numerical results has shown that the method presented is an interesting tool for
finding a numerical solution to the linear Fredholm’s integro-differential equation.

As perspectives, we will apply the iterative methods to avoid the calculation of
inverse matrix of system (16), especially when the size of this matrix is large. Other
works in progress are developed around these kind of equations. We are developing
an analytical and numerical study on the equation (1) in the Sobolev space W 1,1(a,b).
Also, we have the possibility to apply a new projection method based on Legendre
polynomials in the Sobolev space H1(a,b) or cubic b-spline functions and we take as
a consideration all different cases of the kernels.
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