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Abstract. In the present paper, the fractional-order cubic nonlinear Schrödinger equation is
considered. The Schrödinger equation with time and space fractional derivative is studied
at the same time. Different types of travelling wave solutions including the kink solution,
soliton solution, periodic solution, and singular solution for the mentioned equation are ob-
tained by using the Jacobi elliptic functions expansion method. It is shown that the solutions
turn into the exact solutions when the fractional orders go to 1. This method can be relied on
gaining the solutions to time or space fractional order partial differential equations as well as
ordinary ones. Throughout this work, the fractional derivative is given in a conformable sense.
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1. Introduction

Linear and nonlinear partial differential equations, N/LPDEs, have been utilized to
model physical events occurring in science and engineering. In addition to N/LPDEs,
fractional ones have been used to convert real-life problems into mathematical lan-
guage. So, the fractional-order partial differential equations, FPDEs, holds a signif-
icant place in a lot of areas of modern science such as chemistry, physics, biology,
electricity, electronic, viscoelasticity, plasma physics, dynamical system, genetics
algorithms, signal processing, robotic technology, telecommunication, economics
and finance [1–3].

Scientists have placed their focus on acquiring the solutions of FPDEs since they
take places in the areas mentioned above. Motivated by this fact, scientists have
been looking for establishing methods to get the solutions of FPDEs. The tanh-coth
method [4, 5], the exp-function method [6], the (G’/G) expansion method [7, 8],
the Laplace-Adomian decomposition method (LADM) [9, 10], and Jacobi elliptic
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function expansion method [11–13] can be given as examples for the most
well-known methods.

One of the most significant PDEs is the cubic nonlinear Schrödinger equation,
introduced by Laskin [14], as follows:

iut +uxx +µ|u|2u = 0, (1)

where u(x, t) is a complex function of x and t. The equation (1) models the prop-
agation of pulses in fibers excluding fiber loss. It also symbolizes the evolution of
envelope for modulated nonlinear wave groups. Moreover, it is seen in nonlinear
wave propagation in dispersive and inhomogeneous media. Furthermore, it plays im-
portant roles in several areas of physics including water waves, plasma physics, fiber
optics, quantum mechanics, and so on. For further information, see [14].

Over the last few decades, there has been a lot of research on how to gain the
exact solutions for the Schrödinger equations. Biswas [15] implemented the semi-
inverse variational method to the nonlinear Schrödinger’s equation for getting soli-
ton solutions. For the soliton solutions of the nonlinear Schrödinger equation with
time-dependent coefficients, the simplest equation approach is used by Eslami et
al. [16]. Mirzazadeh et al. [17] looked for the topological solitons of the nonlin-
ear Schrödinger equation with dual-power law nonlinearity by using the (G′/G)-
expansion method. Exact solutions of the nonlinear Schrödinger equation were found
by Inc and Ates [18] with the help of the extended Jacobi elliptic function expansion
method.

Some researchers employed other methods to seek soliton solutions of the nonlin-
ear Schrödinger’s equation with different forms of nonlinearities [19–21].

Now, we present the space-time fractional Schrödinger equation as folllows

iDγ

t u+D2β
x u+µ|u|2u = 0, 0 < γ,β ≤ 1, t > 0, (2)

where µ 6= 0 is a real parameter. The equation is called to be attractive if µ > 0.
On the contrary, it is called to be repulsive when µ < 0. For detailed information,
see [22–24].

In the Eq. (2), the fractional derivative is in the conformable sense. The reason
why the conformable derivative was used is that it has some important features given
in section 2. Sharing same propeties with the integer order derivative gives the
opportunity to understand the complex beahviour of real evolution process. The con-
formable derivate is commonly used in fractional order mathematical models due to
these properties.

The main purpose of this paper is to obtain new types of solutions to the Eq. (2).
For this purpose, the Jacobi elliptic functions expansion method is utilized.
This method introduces different forms of solutions at once. In the application,
it is seen that the mentioned method is indeed fertile compared to other methods
in the literature.
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2. Preliminaries

There are some significant definitions for the fractional derivative, such as the
Riemann-Liouville fractional derivative [25], Caputo’s fractional derivative [26],
and conformable fractional derivative [27].

Now, we give the basic definition of the conformable fractional derivative and
some important features.

Let u(x) : [0,∞]→ R be a function. Then the conformable fractional derivative of
the function u(x) is given by

Dγ
xu(x) = lim

h→0

u(x+hx1−γ)−u(x)
h

, 0 < γ ≤ 1, x > 0. (3)

The function u(x) is called γ-differentiable or has γ order fractional derivative if the
limit (3) exists.

Theorem 1 Suppose that u(x) and v(x) are γ-differentiable, 0 < γ ≤ 1, and a, c are
constants. Then the following equalities are satisfied:

– Dγ
x(c) = 0,

– Dγ
x(cu(x)) = cDγ

x(u(x)),

– Dγ
x(x

n) = nxn−γ ,

– Dγ
x(au(x)+bv(x)) = aDγ

x(u(x))+ cDγ
x(v(x)),

– Dγ
x(u(x)v(x)) = v(x)Dγ

x(u(x))+u(x)Dγ
x(v(x)),

– Dγ
x(

u(x)
v(x)

) =
v(x)Dγ

x(u(x))−u(x)Dγ
x(v(x))

v2(x)
, v(x) 6= 0,

– Dγ
x(u(x)) = x1−γ du

dx
,

where u(x) is a first order differentiable function.

3. The Jacobi elliptic functions expansion method

To understand how this method works, we give a summary of the method. In this
methodology, we look for the solutions of the following nonlinear fractional order
partial differential equation:

Q(u,Dγ

t u,Dβ
x u,Dγ

t Dβ
x u,D2γ

tt u,D2β
xx u, . . .) = 0, (4)

where γ and β are the fractional orders.
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For the Schrödinger equation, the wave transformation is considered as follows:

u(x, t) = v(ξ )ei
(

w x2β

2β
−λ

tγ
γ

)
, ξ =

x2β

2β
−2w

tγ

γ
, (5)

where λ is a constant.
Then, putting the equation (5) into the equation (4) converts it to the following

ODE with respect to the variable ξ ,

P(v,v′,v′′, ...) = 0 (6)

where P is a polynomial of the functions v,v′,v′′, . . . .
For different kinds of solutions to (6), we investigate the solutions in the following

forms:

v(ξ ) = a0 +
n

∑
j=1

a jsn j(kξ |m)+
n

∑
j=1

b jns j(kξ |m), (7)

v(ξ ) = a0 +
n

∑
j=1

a jcn j(kξ |m)+
n

∑
j=1

b jnc j(kξ |m), (8)

and

v(ξ ) = a0 +
n

∑
j=1

a jdn j(kξ |m)+
n

∑
j=1

b jnd j(kξ |m) (9)

where n > 0 is a desired positive parameter and named as the balancing constant.

4. Solutions of fractional Schrödinger equation

We consider the equation in the following form:

iDγ

t u+D2β
x u+µ|u|2u = 0, 0 < γ,β ≤ 1, t > 0, (10)

where u(x, t) is a complex-valued function and µ 6= 0 is a real constant. The wave
transformation (5) turns the equation (10) to the following form:

v′′+(λ −w2)v+µv3 = 0. (11)

We use the expansions (7)-(9) in order to obtain the solutions of the equation (11).
We get the balancing constant as n = 1 from the equation (11).

4.1. The sn-ns method

In this part, we utilize the Jacobi elliptic sine function expansion to acquire
the solution of the equation (11) as follows:
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v(ξ ) = a0 +a1sn(kξ |m)+b1ns(kξ |m), (12)

where sn(kξ |m) represents the Jacobi elliptic sine function, and ns(kξ |m)= sn−1(kξ |m)
is the inverse function.

Putting the equation (12) into the equation (11) yields

3a0a2
1µ = 0,

a3
1µ +a1k2m2 +a1k2m = 0,

a1(λ −w2)+3a2
1b1µ +3a2

0a1µ−a1k2m2−a1k2 = 0,

b1(λ −w2)+3a2
0b1µ +3a1b2

1µ−b1k2m2−b1k2 = 0,

a0(λ −w2)+a3
0µ +6a0a1b1µ = 0,

3a0b2
1µ = 0,

b3
1µ +2k2b1 = 0.

Solving these system gives the desired unkowns as follows:

a0 = 0, a1 =∓
√
−(λ −w2)(m2 +m)√

µ(m2 +1)
, b1 = 0, k =∓

√
(λ −w2)√
m2 +1

,

a0 = 0, a1 = 0, b1 =∓
√

2(λ −w2)√
−µ(m2 +1)

, k =∓
√

(λ −w2)√
m2 +1

.

Putting these into the expansion (12) provides

v1(ξ ) =∓
√
−(λ −w2)(m2 +m)√

µ(m2 +1)
sn

(
∓
√
(λ −w2)√
m2 +1

ξ |m

)
,

v2(ξ ) =∓
√

2(λ −w2)√
−µ(m2 +1)

ns

(
∓
√
(λ −w2)√
m2 +1

ξ |m

)
.

Then we have the solutions for the Schrödinger equation given in (10) as

u1,2(ξ ) =∓
√
−(λ −w2)(m2 +m)√

µ(m2 +1)
sn

(
∓
√

(λ −w2)√
m2 +1

ξ |m

)
ei
(

w x2β

2β
−λ

tγ
γ

)
, (13)
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u3,4(ξ ) =∓
√

2(λ −w2)√
−µ(m2 +1)

ns

(
∓
√
(λ −w2)√
m2 +1

ξ |m

)
ei
(

w x2β

2β
−λ

tγ
γ

)
, (14)

where ξ =
x2β

2β
−2w

tγ

γ
.

In addition to these ones, we reach the following solutions for m→ 1 and m→ 0,
respectively.

u5,6(ξ ) =∓

√
w2−λ

µ
tanh

(√
λ −w2
√

2
(
x2β

2β
−2w

tγ

γ
)

)
ei
(

w x2β

2β
−λ

tγ
γ

)
, (15)

u7,8(ξ ) =∓

√
w2−λ

µ
coth

(√
λ −w2
√

2
(
x2β

2β
−2w

tγ

γ
)

)
ei
(

w x2β

2β
−λ

tγ
γ

)
, (16)

and

u9,10(ξ ) =∓

√
2(w2−λ )

µ
csc

(√
λ −w2(

x2β

2β
−2w

tγ

γ
)

)
ei
(

w x2β

2β
−λ

tγ
γ

)
. (17)

4.2. The cn-nc method

In this section, we use the Jacobi elliptic cosine function expansion to obtain the
solutions in the following form:

v(ξ ) = a0 +a1cn(kξ |m)+b1nc(kξ |m), (18)

where cn(kξ |m) stands for the Jacobi elliptic cosine function, and nc(kξ |m)= cn−1(kξ |m)
is the inverse function.

Following the same process above, we obtain

u11,12(ξ ) =∓
√
−m(λ −w2)
√

µ
cn

(
∓
√

(λ −w2)√
m+1

ξ |m

)
ei
(

w x2β

2β
−λ

tγ
γ

)
, (19)

u13,14(ξ ) =∓
√

2(λ −w2)√
−µ(m2 +1)

nc

(
∓
√

(λ −w2)√
m2 +1

ξ |m

)
ei
(

w x2β

2β
−λ

tγ
γ

)
, (20)

where ξ =
x2β

2β
−2w

tγ

γ
.
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For m→ 1, we have

u15,16(ξ ) =∓

√
w2−λ

µ
sech

(√
λ −w2
√

2
(
x2β

2β
−2w

tγ

γ
)

)
ei
(

w x2β

2β
−λ

tγ
γ

)
, (21)

u17,18(ξ ) =∓

√
w2−λ

µ
cosh

(√
λ −w2
√

2
(
x2β

2β
−2w

tγ

γ
)

)
ei
(

w x2β

2β
−λ

tγ
γ

)
. (22)

For m→ 0, we get

u19,20(ξ ) =∓

√
2(w2−λ )

µ
sec

(√
λ −w2(

x2β

2β
−2w

tγ

γ
)

)
ei
(

w x2β

2β
−λ

tγ
γ

)
. (23)

4.3. The dn-nd method

In this chapter, we look for the solutions as in the following form:

v(ξ ) = a0 +a1dn(kξ |m)+b1nd(kξ |m), (24)

where dn(kξ |m) is named as the delta amplitude.
Using the same procedure mentioned above provides us with the following solu-

tions:

u21,22(ξ ) =∓
√
−2(λ −w2)√
µ(m2−2)

dn

(
∓
√

m(λ −w2)√
m2−2

ξ |m

)
ei
(

w x2β

2β
−λ

tγ
γ

)
, (25)

u23,24(ξ ) =∓
√

(m2 +m−2)(λ −w2)√
µ(2−m)

nd

(
∓
√

m(λ −w2)√
m−2

ξ |m

)
ei
(

w x2β

2β
−λ

tγ
γ

)
,

(26)

where ξ =
x2β

2β
−2w

tγ

γ
.

Letting m→ 1 and m→ 0 gives the following solutions, respectively;

u25,26(ξ ) =∓

√
2(w2−λ )

µ
sech

(√
λ −w2(

x2β

2β
−2w

tγ

γ
)

)
ei
(

w x2β

2β
−λ

tγ
γ

)
, (27)

u27,28(ξ ) =∓

√
w2−λ

µ
ei
(

w x2β

2β
−λ

tγ
γ

)
. (28)
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5. Graphical representaion

Now, we illustrate the solutions depending on the order of fractional derivative,
namely γ and β in 2D by setting x = 10 (Figs. 1-16).

Fig. 1. Real part of Eq. (15), x = 10, λ = 0.5, w = 0.5, µ = 1, β = 1

Fig. 2. Imaginary part of Eq. (15), x = 10, λ = 0.5, w = 0.5, µ = 1, β = 1

Fig. 3. Real part of Eq. (16), x = 10, λ = 0.5, w = 0.5, µ = 1, γ = 1
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Fig. 4. Imaginary part of Eq. (16), x = 10, λ = 0.5, w = 0.5, µ = 1, γ = 1

Fig. 5. Real part of Eq. (17), x = 10, λ = 0.75, w = 0.5, µ = 1, β = 1

Fig. 6. Imaginary part of Eq. (17), x = 10, λ = 0.5, w = 0.5, µ = 1, β = 1

Fig. 7. Real part of Eq. (21), x = 10, λ = 0.5, w = 0.5, µ = 1, β = 1

The illustrations, therefore, show the changes of the solutions over time. More-
over, we represent the exact solutions in 3D.

In Figures 3 and 4, we take γ = 1 and see how the solutions act with respect to the
values of β . As shown in these figures, we reach the exact solution when β goes to 1.
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Fig. 8. Imaginary part of Eq. (21), x = 10, λ = 0.5, w = 0.5, µ = 1, β = 1

Fig. 9. Real part of Eq. (22), x = 10, λ = 0.5, w = 0.5, µ = 1, β = 1

Fig. 10. Imaginary part of Eq. (22), x = 10, λ = 0.5, w = 0.5, µ = 1, β = 1

Fig. 11. Real part of Eq. (23), x = 10, λ = 0.5, w = 0.5, µ = 1, β = 1

For the others, we set β = 1 and plot the graphics of the solutions depending on the
γ . Similarly, we gain the exact solutions when γ tends to 1.
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Fig. 12. Imaginary part of Eq. (23), x = 10, λ = 0.75, w = 0.5, µ = 1, β = 1

Fig. 13. Real part of Eq. (27), x = 10, λ = 0.5, w = 0.5, µ = 1, β = 1

Fig. 14. Imaginary part of Eq. (27), x = 10, λ = 0.5, w = 0.5, µ = 1, β = 1

Fig. 15. Real part of Eq. (28), x = 10, λ = 0.5, w = 0.5, µ = 1, β = 1

6. Conclusion

The main purpose of this present paper is to put forth new types of solutions
to cubic nonlinear time and space fractional Schrödinger equation in a conformable
sense. Using the wave transformation given in (5), the Schrödinger equation (10) is
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Fig. 16. Imaginary part of Eq. (28), x = 10, λ = 0.5, w = 0.5, µ = 1, β = 1

converted into ordinary differential equation w.r.t ξ . One of the powerful methods
for solving ODEs, the Jacobi elliptic functions expansion method, is implemented
to the ODE (11). This method introduces new travelling wave solutions to the men-
tioned equation including Jacobi elliptic functions solutions, hyperbolic solutions,
and trigonometric solutions. In addition to these forms of solutions, the kink solu-
tion, soliton solution, periodic solutions, and singular solutions are obtained. As far
as we know, the presented solutions to cubic nonlinear time and space fractional
Schrödinger equation in a conformable sense have not been noticed in the open liter-
ature. Finally, the findings in this paper demonstrate how this method deals with the
time-space fractional PDEs as well as ordinary ones.
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[5] Gözükızıl, O.F., & Akcagil, S. (2013). The tanh-coth method for some nonlinear pseudoparabolic
equations with exact solutions. Advances in Difference Equations, DOI: 10.1186/1687-1847-
2013-143.

[6] He, J., & Zhang, L. (2008). Generalized solitary solution and compacton-like solution of the
Jaulent-Miodek equations using the Exp-function method. Physical Letters A, 371, 1044-1047.

[7] Wang, M., Li, X., & Zahng, J. (2008). The (G’/G)-expansion method and travelling wave solu-
tions of nonlinear evolution equations in mathematical physics. Physical Letters A, 372, 417-423.
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[13] Gündoǧdu, H., & Gözükızıl, O.F., (2018). On different kinds of solutions to simplified modi-
fied form of the Camassa-Holm equation. Journal of Applied Mathematics and Computational
Mechanics, 17, 1-10.

[14] Laskin, N. (2002). Fractional Schrödinger equation. Phys. Rev., 66, 056108.
[15] Biswas, A. (2012). Soliton solutions of the perturbed resonant nonlinear dispersive Schrödinger’s

equation with full nonlinearity by a semi-inverse variational principle. Quantum Phys. Lett., 1,
79-84.

[16] Eslami, M., Mirzazadeh, M., & Biswas, A. (2013). Soliton solutions of the resonant nonlinear
Schrödinger’s equation in optical fibers with time-dependent coefficients by simplest equation
approach. J. Mod. Opt., 60, 1627-1636.

[17] Mirzazadeh, M., Eslami, M., Milovic, D., & Biswas, A. (2014). Topological solitons of reso-
nant nonlinear Schrödinger’s equation with dual-power law nonlinearity using (G’/G)-expansion
technique. Optik, 125, 5480-5489.

[18] Inc, M., & Ates, E. (2017). Bright, dark and singular optical solitons in a power-law media with
fourth-order dispersion. Opt. Quantum Electron., DOI: 10.1007/s11082-017-1150-0.

[19] Akbulut, A., & Kaplan, M. (2018). Auxiliary equation method for time-fractional differential
equations with conformable derivative. Comput. Math Appl., 75, 876-882.

[20] Owyed, S., Abdou, M.A., Abdel-Aty, A., & Dutta, H. (2019). Optical solitons solutions for
perturbed time fractional nonlinear Schrodinger equation via two strategic algorithms. AIMS
Mathematics, 5, 2057-2070.

[21] Neirameh, A., Eslami, M., & Mehdipoor M. (2021). New Types of Soliton Solutions for Space-
time Fractional Cubic Nonlinear Schrodinger Equation. Bol. Soc. Paran. Mat., 39, 121-131.

[22] Laskin, N. (2000). Fractional quantum mechanics. Phys. Rev., 62, 3135-3145.
[23] Laskin, N. (2000). Fractional quantum mechanics and Levy path integrals. Phys. Lett. A.,

268-298.
[24] Laskin, N. (2000). Fractals and quantum mechanics. Chaos, 10, 780.
[25] Kilbas, A.A., Srivastava H.M., & Trujillo J.J. (2006). Theory and Applications of Fractional

Differential Equations. Amsterdam: Elsevier.
[26] Debnath L. (2003). Recent applications of fractional calculus to science and engineering. Int. J.

Math. Math. Sci., 54, 3413-3442.
[27] Khalil, R., Al Horani, M., Yousef, A., & Sababheh, M. (2014). A new definition of fractional

derivative. Journal of Computational and Applied Mathematics, 264, 65-70.


