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1. Introduction

In recent years, the concept of calculus has been widely studied due to their
applicability in modeling various important applications in applied physical science.
The concept of non-integer-order models was used to model applications in sig-
nal processing, fluid mechanics, acoustics, electromagnetism, analytical chemistry,
biology, and many other useful areas of engineering [1–5].

Recently, many fractional models have been solved using analytical and numerical
techniques. To mention a few, we have the homotopy perturbation method (HPM) [6],
the Adomian decomposition method (ADM) [7], the Laplace decomposition method
(LDM) [8], the homotopy perturbation transform method (HPTM) [9], and so on.
Besides using the Laplace-type integral transform [10, 11], some new efficient iter-
ative techniques with the Caputo fractional derivative [12] and Atangana-Baleanu
fractional derivative [13] are developed, for example, see [14–25]. Those iterative
algorithms are successfully applied to many applications in applied physical science.

The aim of this work is to further apply the homotopy perturbation Shehu trans-
form method (HPSTM) to some useful fractional models arising in real-life prob-
lems. The HPSTM is applied directly to fractional models without any discretiza-
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tion, linearization, or variable transformations. The HPSTM is an iterative technique
which converges to solutions in closed form or approximate solutions. The nonlinear
terms are decomposed successfully via He’s polynomials, and the fractional deriva-
tives are computed in the Caputo sense. Applications of three fractional models are
demonstrated, and the analytical and numerical simulations of the three fractional
models are provided to buttress the efficiency, simplicity and the high accuracy of the
HPSTM. The remaining sections of the paper are organized as follows. In section 2,
some preliminaries used in this paper are given. The algorithm of HPSTM and
convergence are presented in section 3. Applications of the HPSTM are given in
section 4. The conclusion is given in section 5.

2. Preliminaries

Here, we present the definition and properties of the STM which generalize
the well-known Laplace transform and the Sumudu integral transform.

DEFINITION 1 [10,11] The Shehu transformation of the function q(t) of exponential
order is defined over the set of functions,

A =

{
q(t) : ∃ C , ω1, ω2 > 0, |q(t)|< C exp

(
|t|
ωk

)
, if t ∈ (−1)k× [0,∞)

}
,

by the following integral

S [q(t)] = Q(ζ ,ξ ) =
∫

∞

0
exp
(
−ζ t

ξ

)
q(t)dt, ζ > 0, ξ > 0. (1)

And the inverse STM is defined as

S−1 [Q(ζ ,ξ )] = q(t), forall t ≥ 0. (2)

Equivalently

q(t) = S−1 [Q(ζ ,ξ )] =
1

2πi

∫
ϑ+i∞

ϑ−i∞

1
ξ

exp
(

ζ t
ξ

)
Q(ζ ,ξ )dζ , (3)

where ζ and ξ are STM variables, and ϑ is a real constant and the integral in Eq. (3)
is taken along ζ = ϑ in the complex plane ζ = x+ iy.

PROPERTY 1 [10, 11] The STM of nth-order derivatives with respect to t is
defined as

S
[
q(n)(t)

]
=

ζ n

ξ nS [q(t)]−
m−1

∑
m=0

(
ζ

ξ

)m−( j+1)

q( j)(0). (4)
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PROPERTY 2 [10–12] The STM of the Caputo fractional derivative is defined as

S
[CDα

t q(t)
]
=

(
ζ

ξ

)α

S [q(t)]−
j−1

∑
j=0

(
ζ

ξ

)α− j−1

q( j)(0+), j−1 < α ≤ j. (5)

DEFINITION 2 [23] The Caputo fractional derivative of the function q(t) of order α

is defined as

CDα
t q(t) =


1

Γ(m−α)

∫ t

0
(t−η)m−α−1q(m)(η)dη ,

Im−β Dmq(t), where m = [α]+1.
(6)

DEFINITION 3 [23] The Mittag-Leffler function for one parameter is defined by the
series expansion

Eµ(λ ) =
∞

∑
k=0

λ k

Γ(µk+1)
, R(µ)> 0, µ,λ ∈ C. (7)

3. Algorithm of the HPSTM

The algorithm of the HPSTM on a standard nonlinear fractional model with initial
condition (IC) is illustrated in the following section.

Dα
ψv(µ,ψ)+M (v(µ,ψ))+F (v(µ,ψ)) = G (µ,ψ), (8)

with the initial condition

v(µ,0) = f (µ). (9)

where F (v(µ,ψ)) stand for the nonlinear operator, Dα
ψ =

∂ α

∂ψα
denote the Caputo

fractional operator, M (v(µ,ψ)) is the linear differential operator, and G (µ,ψ) is
a source term.

Computing STM on Eq. (8) gives

V (µ,ζ ,ξ ) =
ξ

ζ
f (µ)+

(
ξ

ζ

)α

S [G (µ,ψ)]−
(

ξ

ζ

)α

S [M (v(µ,ψ))+F (v(µ,ψ))] .

(10)
Inverting Eq. (10), we get

v(µ,ψ) = G (µ,ψ)−S−1
[(

ξ

ζ

)α

S [M (v(µ,ψ))+F (v(µ,ψ))]

]
, (11)
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where G (µ,ψ) = S−1
[

ξ

ζ
f (µ)+

(
ξ

ζ

)α

S [G (µ,ψ)]

]
.

Then applying HPM, we get

v(µ,ψ) =
∞

∑
n=0

Θ
nvn(µ,ψ). (12)

We decomposed the nonlinear term F (v(µ,ψ)) with

F (v(µ,ψ)) =
∞

∑
n=0

Θ
nHn(v), (13)

where Hn(v) is the He’s polynomials which is defined as

Hn(v1,v2, · · · ,vn) =
1
n!

∂ n

∂Θn

[
F

(
n

∑
j=0

Θ
jv j

)]
Θ=0

,n = 0,1,2, · · ·

After substitution, Eq. (11) gives

∞

∑
n=0

Θ
nvn(µ,ψ) = G (µ,ψ)−Θ

(
S−1

[(
ξ

ζ

)α

S

[
∞

∑
n=0

Θ
nM (vn(µ,ψ))

+
∞

∑
n=0

Θ
nHn(v)

]])
. (14)

Using the coefficients of the same powers of Θ in Eq. (14), we get

Θ
0 : v0(µ,ψ) = G (µ,ψ),

Θ
1 : v1(µ,ψ) = −S−1

[(
ξ

ζ

)α

S [M (v0(µ,ψ))+H0(v)]
]
,

Θ
2 : v2(µ,ψ) = −S−1

[(
ξ

ζ

)α

S [M (v1(µ,ψ))+H1(v)]
]
,

...

Θ
n : vn(µ,ψ) = −S−1

[(
ξ

ζ

)α

S [M (vn−1(µ,ψ))+Hn−1(v)]
]
, n > 0, n ∈N .

Finally, as Θ→ 1, we get

v(µ,ψ) = lim
N→∞

N

∑
n=0

vn(µ,ψ). (15)

In the following theorem, we prove the convergence analysis and the error analysis
of the HPSTM.

THEOREM 1 Convergence analysis. Let X be a Banach space and let ζm(µ,ψ)
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and ζ(µ,ψ) be in X . Suppose Θ ∈ (0,1), then the series solution {ζm(µ,ψ)}∞
m=0

which is defined from
∞

∑
m=0

ζm(µ,ψ) converges to the solution of Eq. (8) whenever

ζm(µ,ψ)≤ Θζm−1(µ,ψ) ∀ m > N, that is for any given ε > 0 there exists a positive
number N such that ‖ζm+n(µ,ψ)‖ ≤ ε ∀m,n > N.

Besides, the absolute error is∥∥∥∥∥ζ (µ,ψ)−
m

∑
n=0

ζn(µ,ψ)

∥∥∥∥∥≤ Θm+1

1−Θ
‖ζ0(µ,ψ)‖ . (16)

PROOF Let us first define a sequence of partial sum {ℑm(µ,ψ)}∞
m=0 as

ℑ0(µ,ψ) = ζ0(µ,ψ),

ℑ1(µ,ψ) = ζ0(µ,ψ)+ζ1(µ,ψ),

ℑ2(µ,ψ) = ζ0(µ,ψ)+ζ1(µ,ψ)+ζ2(µ,ψ),

...

ℑm(µ,ψ) = ζ0(µ,ψ)+ζ1(µ,ψ)+ζ2(µ,ψ)+ζ3(µ,ψ)+ . . .+ζm(µ,ψ).

We only need to show that ℑm(µ,ψ) is a Cauchy sequence in X . To prove the claim,
since Θ ∈ (0,1), the following inequality holds

‖ℑm+1(µ,ψ)−ℑm(µ,ψ)‖= ‖ζm+1(µ,ψ)‖ ≤Θ‖ζm(µ,ψ)‖ ≤Θ
2 ‖ζm−1(µ,ψ)‖

≤Θ
3 ‖ζm−2(µ,ψ)‖ ≤Θ

4 ‖ζm−3(µ,ψ)‖ ≤ · · · ≤Θ
m+1 ‖ζ0(µ,ψ)‖ . (17)

Then for any m,n ∈ N, n > m, we obtain

‖ℑm(µ,ψ)−ℑn(µ,ψ)‖= ‖ζm+n(µ,ψ)‖= ‖(ℑm(µ,ψ)−ℑm−1(µ,ψ))

+(ℑm−1(µ,ψ)−ℑm−2(µ,ψ))+(ℑm−2(µ,ψ)−ℑm−3(µ,ψ))

+ · · ·+(ℑn+1(µ,ψ)−ℑn(µ,ψ))‖ ≤ ‖ℑm(µ,ψ)−ℑm−1(µ,ψ)‖
+‖ℑm−1(µ,ψ)−ℑm−2(µ,ψ)‖+‖ℑm−2(µ,ψ)−ℑm−3(µ,ψ)‖
+ · · ·+‖ℑn+1(µ,ψ)−ℑn(µ,ψ)‖ ≤Θ

m ‖ζ0(µ,ψ)‖+Θ
m−1 ‖ζ0(µ,ψ)‖

+Θ
m−2 ‖ζ0(µ,ψ)‖+Θ

m−3 ‖ζ0(µ,ψ)‖+ · · ·+Θ
m+1 ‖ζ0(µ,ψ)‖

= ‖ζ0(µ,ψ)‖ 1−Θm−n

1−Θ
Θ

n+1. (18)

Since Θ ∈ (0,1), 1 > 1−Θ
m−n and ζ0(µ,ψ) is bounded, we obtain

‖ζm+n(µ,ψ)‖ ≤ ε ∀n,m > N, or lim
m,n→∞

‖ζm+n(µ,ψ)‖= 0. (19)
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Thus, the sequence {ℑm(µ,ψ)}∞
m=0 is a Cauchy sequence in X . The error es-

timate follows directly from Theorem 1 and inequality (17). This completes the
proof. �

4. Demonstrated examples

Application of the HPSTM are illustrated in this section to verify its applicability
and accuracy.

EXAMPLE 1 Consider the wave-like one-dimensional fractional model

Dα
t v− vxx− v = 0, (20)

with the initial condition

v(x,0) = cos(πx), α ∈ (0,1). (21)

Applying STM on Eq. (20) yields

V (x,ζ ,ξ ) =
ξ

ζ
cos(πx)+

(
ξ

ζ

)α

S [vxx + v] . (22)

Inverting Eq. (22), we obtain

v(x, t) = cos(πx)+S−1
[(

ξ

ζ

)α

S [vxx + v]
]
. (23)

Based on the HPM algorithm, we get

v(x, t) =
∞

∑
n=0

Θ
nvn(x, t). (24)

Thus Eq. (23) becomes

∞

∑
n=0

Θ
nvn(x, t) = cos(πx)+Θ

(
S−1

[(
ξ

ζ

)α

S

[
∞

∑
n=0

Θ
nvnxx +

∞

∑
n=0

Θ
nvn

]])
. (25)

From the coefficients of the same powers of Θ in Eq. (25), we get

Θ
0 : v0(x, t) = cos(πx),

Θ
1 : v1(x, t) = S−1

[(
ξ

ζ

)α

S [v0xx + v0]

]
= (1−π

2)cos(πx)
tα

Γ(α +1)
,

Θ
2 : v2(x, t) = S−1

[(
ξ

ζ

)α

S [v1xx + v1]

]
= (1−π

2)2 cos(πx)
t2α

Γ(2α +1)
...
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Thus, as Θ→ 1, we get

v(x, t) = v0(x, t)+ v1(x, t)+ v2(x, t)+ v3(x, t)+ · · ·

= cos(πx)

(
1+

(1−π2)tα

Γ(α +1)
+

(
(1−π2)tα

)2

Γ(2α +1)
+

(
(1−π2)tα

)3

Γ(3α +1)
+ · · ·

)

= cos(πx)
∞

∑
m=0

((1−π2)tα)m

Γ(mα +1)
= Eα((1−π

2)tα)cos(πx), (26)

where Eα(.) is the Mittag-Leffler function. The special case of α = 1 will give the
following result

v(x, t) = exp
(
(1−π

2)t
)

cos(πx), (27)

which is the solution in closed form [25].

(a) (b)
(c) (d)

Fig. 1. (a) Exact solution of Eq. (20) for α = 2 preserves a clear wave and diffusion behavior.
The behavior is maintained in [25]. The approximate solution behavior of Eq. (20) when α = 2.5 is

plotted in Fig. 1(b), and the increase in the value of α results in increase in diffusion and wave
behavior. The (c) exact and approximate solutions of Eq. (20) for different time intervals and different

α
′s are presented in Fig. 1(c). (d) Error analysis of 10th-order approximations of Example 1

EXAMPLE 2 Consider the wave-like three-dimensional fractional model

Dα
t v− 1

36
(
x2vxx + y2vyy + z2vzz

)
= (xyz)4 , 0 < x,y,z < 1, 0 < α ≤ 1, (28)

with the initial condition

v(x,y,z,0) = 0. (29)

Applying STM on Eq. (28), we get

V (x,y,z,ζ ,ξ ) =
(

ξ

ζ

)α

S
[
(xyz)4 +

1
36
(
x2vxx + y2vyy + z2vzz

)]
. (30)

Inverting Eq. (30), we have

v(x,y,z, t) = S−1
[(

ξ

ζ

)α

S
[
(xyz)4 +

1
36
(
x2vxx + y2vyy + z2vzz

)]]
. (31)
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According to HPM, we have

v(x,y,z, t) =
∞

∑
n=0

Θ
nvn(x,y,z, t). (32)

Thus, Eq. (31) becomes

∞

∑
n=0

Θ
nvn(x,y,z, t) = Θ

(
S−1

[(
ξ

ζ

)α

S

[
(xyz)4 +

1
36

(
x2

∞

∑
n=0

Θ
nvnxx

+y2
∞

∑
n=0

Θ
nvnyy + z2

∞

∑
n=0

Θ
nvnzz

)]])
. (33)

Using the coefficients of the same powers of Θ in Eq. (33), we get

Θ
0 : v0(x,y,z, t) = 0,

Θ
1 : v1(x,y,z, t) = S−1

[(
ξ

ζ

)α

S
[
(xyz)4 +

1
36
(
x2v0xx + y2v0yy + z2v0zz

)]]
= (xyz)4 tα

Γ(α +1)
,

Θ
2 : v2(x,y,z, t) = S−1

[(
ξ

ζ

)α

S
[
(xyz)4 +

1
36
(
x2v1xx + y2v1yy + z2v1zz

)]]
= (xyz)4 t2α

Γ(2α +1)
...

Thus as Θ→ 1, we have

v(x,y,z, t) = v0(x,y,z, t)+ v1(x,y,z, t)+ v2(x,y,z, t)+ v3(x,y,z, t)+ · · ·

= (xyz)4
(

tα

Γ(α +1)
+

t2α

Γ(2α +1)
+

t3α

Γ(3α +1)
+ · · ·

)
= (xyz)4

∞

∑
m=1

(tα)m

Γ(mα +1)
= (xyz)4 (Eα(tα)−1) , (34)

where Eα(tα) denotes the Mittag-Leffler function. The special case of α = 1 will
give the following result

v(x,y,z, t) = (xyz)4 (exp(t)−1) , (35)

which is the exact solution of the non-homogeneous linear fractional model in closed
form.
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(a) (b)
(c) (d)

Fig. 2. (a) The surface solution of Eq. (28) for α = 1. The solution shows a clear wave and diffusion
behavior. In Fig. 2(b), the approximate solution behavior of Eq. (28) when α = 0.5 is depicted and the

diffusion and wave behavior decreases when the value of α is increased. In Fig. 2(c), the exact and
approximate solutions of Eq. (28) for different time intervals and different α are depicted. The error

analysis of 10th-order approximations of Example 2 is presented in Fig. 2(c)

EXAMPLE 3 Consider the following nonlinear fractional gas dynamic equation

Dα
t v+

1
2
(v2)x = v− v2, 0 < α ≤ 1, t > 0, (36)

with the initial condition

v(x,0) = exp(−x). (37)

Applying STM on Eq. (36), we have

V (x,ζ ,ξ ) =
ξ

ζ
exp(−x)+

(
ξ

ζ

)α [
S
[

v− 1
2
(v2)x− v2

]]
. (38)

Inverting Eq. (38), we get

v(x, t) = exp(−x)+S−1
[(

ξ

ζ

)α [
S
[

v− 1
2
(v2)x− v2

]]]
. (39)

Now, based on the HPM, we get

v(x, t) =
∞

∑
n=0

Θ
nvn(x, t). (40)

Thus, Eq. (39) becomes

∞

∑
n=0

Θ
nvn(x, t) = exp(−x)+Θ

(
S−1

[(
ξ

ζ

)α
[
S

[
∞

∑
n=0

Θ
nvn−

1
2

∞

∑
n=0

Θ
nH ′

n (v)

−
∞

∑
n=0

Θ
nHn(v)

]]])
, (41)

where Hn(v) and H ′
n (v) are the He’s polynomials denoting the nonlinear terms v2
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and (v2)x respectively. Here are a few computed terms

H ′
0 (v) = (v2

0)x, H0(v) = v2
0,

H ′
1 (v) = (2v0v1)x, H1(v) = 2v0v1,

H ′
2 (v) = (2v0v2 + v2

1)x, H2(v) = 2v0v2 + v2
1,

H ′
3 (v) = (2v0v3 +2v1v2)x, H3(v) = 2v0v3 +2v1v2,

...
...

Using the coefficients of the same powers of Θ in Eq. (41), we have

Θ
0 : v0(x, t) = exp(−x),

Θ
1 : v1(x, t) = S−1

[(
ξ

ζ

)α [
S
[

v0−
1
2
H ′

0 (v)−H0(v)
]]]

= exp(−x)
tα

Γ(α +1)
,

Θ
2 : v2(x, t) = S−1

[(
ξ

ζ

)α [
S
[

v1−
1
2
H ′

1 (v)−H1(v)
]]]

= exp(−x)
t2α

Γ(2α +1)
,

...

Thus, as Θ→ 1, we get

v(x, t) = v0(x, t)+ v1(x, t)+ v2(x, t)+ v3(x, t)+ · · ·

= exp(−x)
(

1+
tα

Γ(α +1)
+

t2α

Γ(2α +1)
+

t3α

Γ(3α +1)
+ · · ·

)
= exp(−x)

∞

∑
m=0

(tα)m

Γ(mα +1)
= exp(−x)Eα (tα) , (42)

where Eα(tα) denotes the Mittag-Leffler function. The special case of α = 1 will
give the following result in closed form

v(x, t) = exp(t− x). (43)

(a) (b)
(c) (d)

Fig. 3. The surface solution behavior of Eq. (36) when α = 1 is plotted in Fig. 3(a). In Fig. 3(b),
the approximate solution behavior of Eq. (36) when α = 0.5 is presented. The exact and approximate

solutions of Eq. (36) for different time intervals and a different α are depicted in Fig. 3(c).
The decrease in α exhibits slow diffusion behavior. The absolute error analysis

of 10th-order approximations of Example 3 is presented in Fig. 3(d)
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5. Conclusions

In this paper we further applied the analytical method called the homotopy per-
turbation Shehu transform method (HPSTM) to some important fractional models
arising in applied physical sciences. The analytical method proved to be highly effi-
cient and does not require the unnecessary computations of the Adomian polynomials
and the Lagrangian multiplier which is an advantage over the (ADM) and the (VIM).
Using the analytical method, series solutions are easily computed and the results in
closed form are successfully obtained. The obtained results are compared with the
results of the existing techniques. The HPSTM proved to be a powerful mathemati-
cal tool for solving fractional models and can further be extended to more complex
fractional models in applied science and engineering.
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