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Abstract. In this paper, time fractional flow of a Newtonian fluid through a uniform
cylindrical tube with a non-Darcy porous medium in the presence of dust particles under the
application of a uniform magnetic field along the meridian axis is discussed. The implication
of time fractional order differential equations in flow problems and some benefits of
fractional order differential equations are highlighted. The Laplace Decomposition Method
(LDM) is used to obtain an approximate solution to the proposed problem. The impact of
fractional order and integer order of the differential equations and also the effects of some
important parameters on the flow system are shown in the forms of graphs and a table.
The convergence test of the solution is done. It has been observed that the fractional order
differential equation reveals more things like the decrease in dust particle velocity due to the
increase in magnetic field for fractional order derivatives, whereas, no noticeable change in
dust particle velocity due to the change in magnetic field for integer order derivatives are
observed. Also, it is observed that an increase in a fractional order derivative decrease the
fluid as well as the dust particle velocities. The skin friction at the walls of the tube are also
highlighted.
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1. Introduction

The study of fluid flow, especially the biomagnetic fluid in the presence of dust
particles or impurities is of utmost importance in the present day. It can be widely
found in biomedical sciences including blood flow like the behaviour of blood flow
in the presence of a magnetic field. In the last few decades, fractional Navier-Stokes
equations have played a very important role in dealing with such problems. There
are several methods to solve fractional Navier-Stokes equations. But out of all those
methods, the Laplace decomposition method (LDM) is one of the best methods.
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Jafari et al. [1] used the LDM to solve linear and nonlinear fractional diffusion wave
equations. Kumar et al. [2] found the analytical solution of fractional Navier-Stokes
equations by the modified LDM. Ali et al. [3] used the LDM to obtain the analytical
solution of the general Fisher’s equation. Yousef et al. [4] used the LDM to solve the
delay differential equations with an initial value problem. Mahmood et al. [5] used
the LDM to deal with the multidimensional model of time fractional Navier-Stokes
equations.

Our study is to detect the behaviour of the biomagnetic fluid flow in the presence
of dust particles and a uniform magnetic field through a uniform cylindrical tube with
porous medium. In recent years, many works have been developed on the study of
the flow of the biomagnetic fluid like blood inside the body. Eldesoky [6] studied slip
effects on the unsteady MHD pulsatile blood flow through a porous medium in an
artery under the effect of body acceleration. Kumar et al. [7] modeled blood flow in
an inclined tapered artery under the MHD effect through a porous medium. Shah et
al. [8] also studied the effects of the fractional order and magnetic field on the blood
flow in cylindrical domains. Topoliceanu et al. [9] gave a study on the blood two-
-phase dusty fluid flow. Attia [10] studied the magnetohydrodynamics (MHD) flow
of a dusty fluid through a circular pipe considering the Hall effect. Gireesha et al. [11]
studied the geometry of the unsteady motion of a dusty fluid through porous media in
a uniform pipe. Attia et al. [12] studied the unsteady magnetohydrodynamics (MHD)
flow and heat transfer of a dusty electrically conducting fluid between two infinite
horizontal plates.

Motivated by the above works, this paper deals with the study of flow of a Newto-
nian biomagnetic fluid through a uniform cylindrical tube in the presence of a mag-
netic field. In addition, the fluid flow medium is considered to be a porous one. Fur-
thermore, it is considered that the fluid contains impurities in the form of dust par-
ticles. A flow model for this situation in the form of the fractional Navier-Stokes
equation is developed. Since it is not possible to obtain the general solution of the
Navier-Stokes equation easily, certain assumptions are considered and an approxi-
mate solution of our fractional Navier-Stokes equation is obtained. In doing so, the
Laplace Decomposition Method (LDM) is used to obtain an approximate solution.
After successfully checking the convergence of the solution, graphs of the different
parameters involved are obtained and a table is also highlighted. The main objective
of this paper is to highlight the advantages of the time fractional order flow model
over classical integer order flow models.

1.1. Caputo Fractional Derivative

Definition 1 A real function f (τ), τ > 0 is said to be in the space Cλ , λ ∈R if there
exists a real number d(> λ ) such that f (τ) = τ

d f1(τ), where f1(τ) ∈C[0,∞) and is
said to be in the space Cn

λ
iff f (n) ∈Cλ , n ∈ N. 2
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Definition 2 The fractional derivative of a function f (τ) in Caputo sense is defined
as

Dβ f (τ) =
1

Γ(n−β )

∫
τ

0
(τ− z)n−β−1 f (n)(z)dz

for n−1 < β ≤ n, n ∈ N, τ > 0, f ∈Cn
−1. 2

1.2. Basic equations

The basic equations for the flow of an incompressible fluid in a porous cylindrical
domain [13, 14] are given by

Dα~q
Dτα

=− 1
ρ
Op+νO2~q−

~J×~B
1− vp

~q+
κN0

1− vp
(~q− ~qp)−

ν

(1− vp)K
~q− cb

(1− vp)
√

K
~q 2

(1)

m
Dβ ~qp

Dτβ
= κ(~q− ~qp) (2)

where ~J = σ(~E+~q×~B), ~J is current density, σ is electrical conductivity, ~E is electric
field, ~B is magnetic induction, ~q is the fluid velocity, ~qp is the dust particle velocity,
ν is the kinematic coefficient of viscosity, δ and η are the particle mass parameter,
vp is the volume fraction of the dust particle, ρ is the density of the fluid particle, p is
the pressure, τ is the time, α and β are time fractional derivatives, K is the medium’s
permeability, N0 is the number density of dust particle, κ is the Stoke’s resistance,

cb is non-Darcian parameter and
D

Dτ
=

∂

∂τ
+ qψ

∂

∂ψ
+

qθ

ψ

∂

∂θ
+ qz

∂

∂ z
. In our case,

∂

∂θ
≡ 0 (due to axi-symmetric flow) and also the velocity components along radial

and meridian direction are also taken to be zero due to axial flow consideration i.e. if
~q= (qψ ,qθ ,qz) then qψ = qθ = 0 and thus, we have~q= qz(ψ,z,τ). Also, we consider

an infinite cylindrical tube which gives
∂

∂ z
≡ 0. Thus, (1) and (2) become

∂ α~q
∂τα

=− 1
ρ
Op+νO2~q−

~J×~B
1− vp

~q+
κN0

1− vp
(~q− ~qp)−

ν

(1− vp)K
~q− cb

(1− vp)
√

K
~q 2

(3)

m
∂ β ~qp

∂τβ
= κ(~q− ~qp) (4)

The following are a few assumptions considered in this work: (i) The fluid under con-
sideration is an incompressible Newtonian fluid, (ii) The flow is considered axisym-
metric as well as axial in nature, (iii) Only the time fractional derivative of Navier-
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-Stokes equations is taken into consideration, (iv) The magnetic field is applied along
the meridian axis i.e. for our case ~B = (0,B0,0) where B0 is the component of the
magnetic field in meridian axis, considered as uniform, (v) We consider the voltage
difference along the rear ends of the tube to be very low and, as a result, the electric
field is neglected i.e. for our case ~E = 0.

Definition 3 Let g(τ) be a function of τ specified for τ > 0. Then the Laplace trans-
form of the function g(τ) is denoted and defined as [15]

L{g(τ)}= f (s) =
∫

∞

0
e−sτg(τ)dτ where s ∈ C

Definition 4 The Laplace transform of the Caputo fractional derivative is defined
as [16]:

L[Dmβ u(y,τ)] = smβ L[u(y,τ)]−
m−1

∑
j=0

smβ− j−1u( j)(y,0), m−1 < mα ≤m ,m∈N (5)

2. Mathematical formulation of the problem

The schematic representation of the flow system is shown in the following figure.
We have considered a uniform cylindrical tube of radius ψ with z−axis as the axis of
the cylinder. We have also considered the medium through which the fluid passes to
be a porous one, and the fluid which is allowed to pass contains dust particles, and
a uniform magnetic field is also applied along the meridian axis. The volume fraction
of the dust particles vp are also taken into consideration.

Fig. 1. Schematic diagram of the flow system

On the basis of the construction, we define a model of Newtonian fluid flow in
a porous medium, with impure elements treated as dust particles present in it, through
a uniform cylindrical tube in the presence of an applied magnetic field. We consider
the flow to be taking place in the axial direction of the tube and the magnetic field
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being applied perpendicularly to the direction of the flow. Therefore, taking into
consideration the assumptions made, we get our proposed model from (3) and (4) as

ρ(1− vp)
∂U∗

∂τ∗
= (1− vp)

[
−∂ p∗

∂ z∗
+

µ

ψ∗
∂

∂ψ∗

(
ψ
∗ ∂U∗

∂ψ∗

)]
−σB2

0U∗−κN0(U∗−U∗p)

− ν

K∗
U∗− cb√

K∗
U∗ 2

(6)

mN0
∂U∗p
∂τ∗

= κN0(U∗−U∗p) (7)

We define the following non-dimensional quantities as

ψ =
ψ∗

ψ0
, U =

U∗

Uψ

, Up =
U∗p
Uψ

, τ =
τ∗

τψ

, p =
p∗tψ
ρUψ

, z =
z∗

ψ0
.

where ψ0 is the reference radius, Uψ is the reference velocity, τψ is the reference
time.

Thus, after non-dimensionalising equations (6) and (7), and also considering
the pressure gradient to be constant throughout the flow, we write our proposed model
in time-fractional derivative form as

∂ αU
∂τα

=P+
1

Re

(
∂ 2U
∂ψ2 +

1
ψ

∂U
∂ψ

)
− H2

a

1− vp
U− δη

1− vp
(U−Up)−

1
(1− vp)K

U− Fr
1− vp

U2

(8)

∂ βUp

∂τβ
= η(U−Up) (9)

where α,β ∈ (0,1], U is the fluid velocity vector, Up is the dust particle velocity
vector, P is the constant pressure gradient, τ is the time, ψ is the radius of the tube,
vp is the volume fraction of the dust particle, α and β are the time-fractional order
parameters, Re is the Reynold’s number, H2

a is the Square of Hartmann number, δ and
η are the particle mass parameters, Fr is the Forchheimer coeffcient of the porous
medium and K is permeability of the medium.

3. Laplace Decomposition Method (LDM)

The LDM is widely used to get a solution of a non-linear differential equation
[1, 2]. Let us consider the general nonlinear fractional partial differential equation:

DmβU(y,τ)+R[y]U(y,τ)+N[y]U(y,τ) = g(y,τ) , τ > 0 , y ∈ R , m−1 < mα ≤ m
(10)
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where Dmβ =
∂ mβ

∂τmβ
, m ∈ N and R[y], N[y] denote the linear and nonlinear terms in y

and g(y,τ) are continuous functions. Next, we apply the Laplace transform on both
sides of (10) and get

L[DmβU(y,τ)]+L[R[y]U(y,τ)+N[y]U(y,τ)] = L[g(y,τ)], τ > 0, y ∈ R,
m−1 < mα ≤ m

(11)

And then applying inverse Laplace transform on (11), we get

U(y,τ) = g(y,τ)−L−1[s−mβ L[R[y]U(y,τ)+N[y]U(y,τ)] ] (12)

where g(y,τ) represents the term arising from the source term and the prescribed
initial conditions.
The Laplace decomposition method assumes a series solution of the form

U(y,τ) =
∞

∑
n=0

Un(y,τ) (13)

The nonlinear term N[y]U(y,τ) is decomposed as [17]

N[y]U(y,τ) =
∞

∑
n=0

An (14)

where An are called Adomian polynomials of U0,U1,U2, . . . ,Un, and it is defined as

An =
1
n!

dn

dτn

[
N

(
∞

∑
k=0

λ
kUn

)]
λ=0

, n = 0,1,2,3, . . . (15)

Now, using all these in (12), we introduce the recursive relation as

U0(y,τ) = g(y,τ)

Un+1(y,τ) =−L−1[s−mβ L[R[y]Un +An]], n≥ 0
(16)

Theorem 1 Let N be an operator from a Hilbert space H into H and U be the exact

solution of (10).
∞

∑
n=0

Un which is obtained by (16) converges to U if there exists 0 ≤

α < 1 such that ‖Uk+1‖ ≤ α‖Uk‖ ∀ k ∈ N∪{0} where ‖.‖ is the supremum norm
[18]. 2

Definition 5 For every n ∈ N∪{0}, we define [18]

αn =


‖Un+1‖
‖Un‖

, ‖Un‖ 6= 0

0, ‖Un‖= 0
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4. Solution of the problem by LDM

Case I. With initial conditions U(ψ,0) = a(1−ψ
2) =Up(ψ,0) where ψ ∈ [0,1]

and a > 0, the LDM is used to obtain the solutions of (8) and (9).
Using the Laplace decomposition method on (8), we get

U0(ψ,τ) = a(1−ψ
2)+P

τα

Γ(α +1)
(17)

U1(ψ,τ) = ξ1
τα

Γ(α +1)
+ξ2

τ2α

Γ(2α +1)
+ξ3

τ3α

Γ(3α +1)
(18)

U2(ψ,τ) = ξ4
τ2α

Γ(2α +1)
+ξ5

τ3α

Γ(3α +1)
+ξ6

τ4α

Γ(4α +1)

− Fr
1− vp

.
2Pξ2

Γ(α +1)Γ(2α +1)
Γ(4α +1).

τ5α

Γ(5α +1)
+

δη2P
1− vp

.
τ2α+β

Γ(2α +β +1)

(19)

and so on. Thus, we get α0 = 0.556783 < 1, α1 = 0.725141 < 1 and so on. And
using Theorem (1), we can conclude that our series solution obtained by the LDM is
convergent.

Again, with the similar operation as above, we get the following from (9)

Up0 = a(1−ψ
2) (20)

Up1 = ηP
τα+β

Γ(α +β +1)
(21)

Up2 = ηξ1
τα+β

Γ(α +β +1)
+ηξ2

τ2α+β

Γ(2α +β +1)
+ηξ3

τ3α+β

Γ(3α +β +1)

−η
2P

τα+2β

Γ(α +2β +1)

(22)

and so on. Thus, we get α
′
0 = 0.75 < 1, α

′
1 = 0.710445 < 1 and so on as above. And

using Theorem (1), we can conclude that our series solution obtained by the LDM
is convergent.

Case II. With initial conditions U(ψ,0) = aψ =Up(ψ,0) where ψ ∈ [0,1] and a> 0,
the LDM is used to obtain the solutions of (8) and (9).

Using the Laplace decomposition method on (8), we get

U0 = aψ +P
τα

Γ(α +1)
(23)

U1 = ξ7
τα

Γ(α +1)
+ξ8

τ2α

Γ(2α +1)
+ξ9

τ3α

Γ(3α +1)
(24)
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U2 = ξ10
τ2α

Γ(2α +1)
+ξ11

τ3α

Γ(3α +1)
+ξ12

τ4α

Γ(4α +1)
− Fr Γ(4α +1)

1− vp
.

2Pξ9

Γ(α +1)Γ(3α +1)
.

τ5α

Γ(5α +1)
+

δη2P
1− vp

.
τ2α+β

Γ(2α +β +1)

(25)

and so on. Thus, we get α
′′
0 = 0.549767 < 1, α

′′
1 = 0.713351 < 1 and so on as above.

And using Theorem (1), we can conclude that our series solution is convergent.
Again by using the Laplace decomposition method, we get the following from (9)

Up0 = aψ (26)

Up1 = ηP
τα+β

Γ(α +β +1)
(27)

Up2 = ηξ7
τα+β

Γ(α +β +1)
+ηξ8

τ2α+β

Γ(2α +β +1)
+ηξ9

τ3α+β

Γ(3α +β +1)

−η
2P

τα+2β

Γ(α +2β +1)

(28)

and so on. Thus, we get α
′′′
0 = 0.75 < 1, α

′′′
1 = 0.709645 < 1 and so on as above.

And also Theorem (1), we can conclude that our series solution is convergent. The
unknown terms are highlighted in the Appendix section at the end of this paper.

5. Results and discussion

(a) U vs ψ (H2
a varies) (b) Up vs ψ (H2

a varies)

Fig. 2. U vs ψ and Up vs ψ (H2
a varies) in Case-I

The values of parameters used throughout are vp = 0.03, P = 5, δ = 0.5, η = 0.6,
a = 0.4, K = 0.9, Fr = 0.5, τ = 0.1. In Figures 2 (with fixed parameters Re =
= 500, α = 0.7, β = 0.5) the parametric influence of the magnetic field parameter
placed along the meridian axis direction decreases the fluid as well as the dust parti-
cle velocities as it increases. This is due to the application of a magnetic field to the
flow in a normal direction. A Lorentz force is produced which acts against the flow
resulting in the decrease of fluid velocity. Figures 3 (with fixed parameters Re = 500,
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(a) U vs ψ (H2
a varies with α = β = 1) (b) Up vs ψ (H2

a varies with α = β = 1)

Fig. 3. U vs ψ and Up vs ψ (H2
a varies with α = β = 1) in Case-I

(a) U vs ψ (α varies) (b) Up vs ψ (α varies)

Fig. 4. U vs ψ and Up vs ψ (α varies) in Case-I

(a) U vs ψ (β varies) (b) Up vs ψ (β varies)

Fig. 5. U vs ψ and Up vs ψ (β varies) in Case-I

α = 1, β = 1) show that the change in the magnetic field does not show any noticeable
change in the dust particle velocity if we take the time fractional order parameters
α = β = 1. Figures 4 (with Re= 500, H2

a = 0.1, β = 0.5) highlight that the increment
in time fractional order α decreases the fluid as well as the dust particle velocities.
A similar pattern is observed for the time fractional order β in Figures 5 (with
Re = 500, H2

a = 0.1, α = 0.5). In Figures 6 (with Re = 10, α = 0.8, β = 0.5),
the parametric influence of the magnetic field parameter placed along the meridian
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(a) U vs ψ (H2
a varies) (b) Up vs ψ (H2

a varies)

Fig. 6. U vs ψ and Up vs ψ (H2
a varies) in Case-II

(a) U vs ψ (H2
a varies with α = β = 1) (b) Up vs ψ (H2

a varies with α = β = 1)

Fig. 7. U vs ψ and Up vs ψ (H2
a varies with α = β = 1) in Case-II

(a) U vs ψ (α varies) (b) Up vs ψ (α varies)

Fig. 8. U vs ψ and Up vs ψ (α varies) in Case-II

axis direction to the flow is found to decrease the fluid velocity and the dust parti-
cle velocity as it increases because of the induced Lorentz force. In Figures 7 (with
Re = 10, α = 1, β = 1), we see that the change in the magnetic field does not show
any noticeable change in the dust particle velocity if we take the time fractional order
parameters α = β = 1. In Figures 8 (with Re = 500, H2

a = 0.1, β = 0.5), the fluid as
well as the dust particle velocity decrease with the rise in the value of α . In Figures 9
(with Re = 900, H2

a = 0.1, α = 0.5), we observe the same pattern for β as in the case
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(a) U vs ψ (β varies) (b) Up vs ψ (β varies)

Fig. 9. U vs ψ and Up vs ψ (β varies) in Case-II

Table 1. Skin friction for Case-I and Case-II

H2
a α β Fr Re Skin friction in Case-I Skin friction in Case-II

0.1 0.7 0.5 0.5 500 0.630332 –0.305116

0.2 0.7 0.5 0.5 500 0.62227 –0.302725

0.3 0.7 0.5 0.5 500 0.614752 –0.300607

0.1 0.8 0.5 0.5 500 0.667319 –0.31813

0.1 0.9 0.5 0.5 500 0.703051 –0.33597

0.1 1 0.5 0.5 500 0.730655 –0.351746

0.1 0.5 0.7 0.5 500 0.753524 –0.432531

0.1 0.5 0.8 0.5 500 0.753524 –0.432531

0.1 0.5 0.9 0.5 500 0.753524 –0.432531

0.1 0.5 0.6 0.6 500 0.826661 –0.498621

0.1 0.5 0.6 0.7 500 0.917964 –0.579908

0.1 0.5 0.6 0.8 500 1.02743 –0.67639

0.1 0.5 0.6 0.5 100 0.756691 –0.432801

0.1 0.5 0.6 0.5 200 0.754712 –0.432634

0.1 0.5 0.6 0.5 300 0.754052 –0.432577

of α . Table 1 represents the skin friction = −
(

∂U
∂ψ

)
ψ=1

at the walls of the tube

for both Case-I and Case-II. Here, it is observed that due to an increase in H2
a and

Re, the magnitude of the values of skin friction decreases. Also, due to increasing
values of α and Fr, the magnitude of the values of skin friction increases. It is also
interesting to find that the change in values of β , the magnitude of the skin friction
does not change, which indicates that the skin friction is not affected by the presence
of dust particles in the flow domain.
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6. Conclusion

A theoretical study of a time-fractional incompressible Newtonian viscous fluid
is considered through a non-Darcy porous medium in a uniform cylindrical tube
with dust particle immersion under the influence of a uniform magnetic field along
the meridian axis. The Laplace Decomposition Method (LDM) is used to find
an approximate solution to our proposed time fractional order differential equation.
It is observed that the presence and increase of magnetic field parameter H2

a , time-
fractional parameter α , β reduces the velocity flow rate of fluid as well as the dust
particle flow rate. It has been observed that a noticeable change in dust particle veloc-
ities occur only when we take non-integer values of time fractional orders α and β .
But if we take α = β = 1, then no noticeable change is observed in the dust particle
velocity. Thus, the time fractional orders play a very important role in the fractional
order fluid flow. It is observed that the graphs that showed no noticeable change for
integer order derivatives are found to show a noticeable change and variation for frac-
tional order derivatives. Therefore, we can conclude that taking fractional order time
derivatives has its own benefits in studying a fluid flow system which can be of much
importance in many fields of sciences. The present work can be extended to study
the behaviour of flow of non-Newtonian fluids like that of blood flow in human body
under certain conditions.

Appendix

• ξ1 =−
4a
Re
−
(

H2
a

1− vp
+

1
K(1− vp)

)
a(1−ψ

2)− Fr
1− vp

a2(1−ψ
2)2

• ξ2 =−
(

H2
a

1− vp
+

1
K(1− vp)

+
δη

1− vp
+

(
Fr

1− vp
2a(1−ψ

2)

))
P

• ξ3 =
−Fr. P2

1− vp
.

Γ(2α +1)
(Γ(α +1))2

• ξ4 =
4a
Re

(
H2

a

1− vp
+

1
K(1− vp)

)
− Fr. a2

Re(1− vp)
(16ψ

2−8)

−
(

H2
a

1− vp
+

1
K(1− vp)

+
δη

1− vp

)
ξ1−

Fr
1− vp

.
2a(1−ψ2)ξ1

Γ(α +1)
Γ(α +1)

• ξ5 =
8aP Fr

Re(1− vp)
−
(

H2
a

1− vp
+

1
K(1− vp)

+
δη

1− vp

)
ξ2

− Fr
1− vp

{
2a(1−ψ2)ξ2

Γ(2α +1)
+

2Pξ1

(Γ(α +1))2

}
Γ(2α +1)

• ξ6 =−
(

H2
a

1− vp
+

1
K(1− vp)

+
δη

1− vp

)
ξ3

− Fr
1− vp

{
2a(1−ψ2)ξ3

Γ(3α +1)
+

2Pξ2

Γ(α +1)Γ(2α +1)

}
Γ(3α +1)
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• ξ7 =
a

ψ Re
−
(

H2
a

1− vp
+

1
(1− vp)K

)
aψ− Fr

1− vp
a2

ψ
2

• ξ8 =−
(

H2
a

1− vp
+

1
(1− vp)K

)
P− Fr

1− vp
2aψP− δη

1− vp
P

• ξ9 =−
Fr

1− vp
.

P2

(Γ(α +1))2 Γ(2α +1)

• ξ10 =
1

Re

(
a

ψ3Re
− 4a2Fr

1− vp
− a

ψ

(
H2

a

1− vp
+

1
(1− vp)K

))
−
(

H2
a

1− vp
+

δη

1− vp
+

1
(1− vp)K

)
ξ7−

Fr Γ(α +1)
1− vp

.
2aψξ7

Γ(α +1)

• ξ11 =−
2aPFr

ψ(1− vp)Re
−
(

H2
a

1− vp
+

δη

1− vp
+

1
(1− vp)K

)
ξ8

− Fr Γ(2α +1)
1− vp

{
2aψξ8

Γ(2α +1)
+

2Pξ7

(Γ(α +1))2

}

• ξ12 =−
(

H2
a

1− vp
+

δη

1− vp
+

1
(1− vp)K

)
ξ9−

Fr Γ(3α +1)
1− vp

{
2aψξ9

Γ(α +1)
+

2Pξ8

Γ(α +1)Γ(2α +1)

}
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