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Abstract. This paper presents the calculation of the hydrodynamic drift force by using  

the potetial-based boundary element method (BEM). The potential theory and far-field 

wave drift forces solution will be described. The comparison of non-dimensional drift force 

for surge and heave motions are in good agreement between numerical and experimental 

data. The effect of different drafts and the radius of a cylinder on the drift forces 

(surge, heave and pitch) are presented and discussed.  
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1. Introduction  

Second-order and low-frequency wave forces have an important influence  

on the dynamics of floating objects. These forces are known as wave drift forces 

and the results in the steady slow drift motion along the wave direction. Although 

the first-order wave forces involve a significant portion of body excitation, the sec-

ond-order theories are important in some surrounding circumstances to calculate 

the nonlinear effects of the wave. In these theories, the condition of flow imperme-

ability into the object on the wetted surface is considered more precise. In the solv-

ing procedure of second-order equations, all terms related to the velocity potential 

function, fluid pressure and wave forces which have a linear relationship with both 

wave amplitude and second power of wave amplitude are considered. Furthermore, 

the nonlinear velocity effects of fluid particles on a free surface will also be con-

sidered. Second-order equations include moderate forces and oscillating forces 

with frequencies greater or less than the frequency of the wave.  

In general, research on the second-order wave forces can be divided into four 

categories [1]. The first set of methods based on the potential theory is considering 



H. Ghafari, M. Motallebi, H. Ghassemi 70 

the law of momentum conservation and energy in the surrounding fluid of a float 

object. In these methods, changes in fluid momentum with the average fluid force on 

a float object are considered equal, which are called far-field methods. The second 

group of methods is based on the potential theory method, which, by direct integra-

tion, calculates the fluid pressure on the floating body of the second-order forces. 

The second group of methods is based on the potential theory method, which, by 

using direct integration, calculates the fluid pressure on the floating body surface 

and the average of second-order wave forces, in which, these methods are nomi-

nated as near-field methods. There is also another method called the theory of  

potentials extracts the wave second-order forces by equating radiation damping  

energy and the work done by the wave collision. These methods are approximate 

and with the assumption of floating cylindrical body, the results will be appropri-

ated. Finally, it is possible to propose approximate methods based on the Morrison 

equation and partial motion of second-order wave forces that are more suitable for 

lean semi-submersible structures. The force caused by wave radiation and diffrac-

tion has an important effect on floating objects in deep waters. The diffraction 

wave represents the dispersed term of a collision wave by a constant object.  

Besides, the radiation wave means that the wave generates through the fluctuation 

of a structure in stagnant water due to the collision of the incident wave. The forces 

caused by these phenomena can be determined by integrating the pressure on the 

surface of the floating structure using the diffraction and radiation potential func-

tion. Goodman presented the mean vertical force imposed to a semi-submersible 

cylinder due to collision of a lateral regular wave for wavelengths within the cylin-

der diameter range [2]. Dalzell et al. computed the components of the mean wave 

forces by Salvesen theory [3].  Comparison of numerical and experimental results 

shows the good accuracy of this theory. Pinkster extracted the relation between  

a low-frequency second-order wave drifting force and pressure due to the second 

order potential in the irregular wave [4]. Pijfers & Brink, extracted relations based 

on the Morrison equation to calculate the second-order wave force on semi- 

-submersible structures [5]. In an irregular sea condition that consists of regular 

wave components superposition, the high and low-frequencies second-order hydro- 

dynamic forces, in the sum and the difference of frequencies formed from linear 

waves. These nonlinear waves can play an important role in stimulating some of 

the most important phenomena such as slow drift motion [6]. Several papers con-

cern methods to investigate second-order interaction between waves and structure. 

Semi-analytical formulation for the second-order wave force applied to geometric 

fundamental structures by Taylor & Kernot [7] using an indirect method [8], which 

is based on introduction of a radiation potential for calculating second-order wave 

forces and without explicit evaluation of second-order diffracted wave potential  

is presented. 

Lim and Kim designed a new wave method for estimating the extreme slow-drift 

motion of moored offshore platforms [9]. The accuracy and applicability of this 

new method were tested through a series of simulations with a semi-submersible 

model. Jurado and Bredmose surveyed a numerical model that includes both invis-
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By considering an incompressible, non-viscous and irrational flow, the velocity 

potential function is obtained from the Laplace equation solution in the whole fluid 

domain as follows [15]: 

∆� � !"�!�" � !"�!#" � !"�!$" � 0 (3) 

the fluid-structure interaction behavior is described by the following set of bound-

ary conditions: 

 −�"� � g ()(* � 0   +,   $ � 0  

 
()(- � .−��,�  For radiation potential   − ()(-      For diffraction potential <  

 
()(* � 0 +, $ � −= (?�
@ =A
ℎ)  

 |∇�| → 0  ?ℎ,  G�" � H" → ∞ 

(4) 

The boundary integration method is used in order to solve the fluid velocity  

potential function which is satisfied by boundary conditions. Applying Green’s 

theorem, the velocity potential of wave radiation and diffraction can be represented 

as a Fredholm second kind integral equation: 

I���⃗� � J .��K⃗� !L��⃗،K⃗،��!,�K⃗� − L��⃗،K⃗،�� !��K⃗�!,�K⃗�M 
NO

=P (5) 

where G is Green's function. For more details, refer to Ghafari et al. [16]. 

2.2. Drift forces 

The drift forces concept can be explained based on considering the hydrodynamic 

responses supposition of the fixed or floating body surrounding by an incompressi-

ble, irrotational, homogeneous and inviscid fluid.  Furthermore, in this hypothesis, 

both body motion responses amplitude and the fluid wave amplitude are small. 

With these assumptions, the velocity potential function can be used to express  

the surrounding fluid. For the sake of declaring  the wave elevation, the position of 

a point on a hull body and the fluid potential, the perturbation approach is applied 

as below: 

Q � RQ(�) � R"Q(") � S(RT) U � U(V) � RU(�) � R"U(") � S(RT)    ?ℎ@ R → 0 

�⃗ � �⃗(V) � R�⃗(�) � R"�⃗(") � S(RT) 

(6) 
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where R is the perturbation parameter and the static values, the first and the se- 

cond order variations with respect to R, denoting by superscripts (0), (1) and (2),  

respectively. 

 �⃗(V) � �⃗W(V) � �⃗     �⃗(�) � �⃗W(�) � X⃗(�) × �⃗ (7) 

where, �⃗W(V)
, �⃗W(�)

and X⃗(�) are the static position, the first order body center of  

gravity translational and rotational motion in fixed reference axis, respectively.  

The point position can be defined by �⃗ in local structure axes. It should be noted 

that �⃗(") has similar forms as those in Eq. (7). 

The first-order velocity �⃗Z (�), response acceleration, �⃗[ (�) and the first-order 

component of the normal vector, \]]⃗ (�) in fixed reference axes in a location of the 

hull surface are written as follows 

 �⃗Z (�) � �⃗ZW(�) � X⃗Z (�) × �⃗,   �⃗[ (�) � �⃗[W(�) � X⃗[ (�) × �⃗,   \]]⃗ (�) � X⃗(�) × ,]⃗  (8) 

The fluid pressure at a specific point is measured on the basis of Bernoulli’s 

equation, which can be represented by the Taylor series in Eq. (9): 

A � −^ !Φ!
 − 12 ^∇Φ. ∇Φ − ρgZ � p(V) � p(�) � p(") � Ο(RT) (9) 

Since: 

p(V) � −^e�T(V)
 

p(�) � −^e�T(�) − ^ !Φ(�)!
  

p(") � − 12 ^f∇Φ(�)f" − ^�⃗(�). ∇ !Φ(�)
!
 − ^ !Φ(")

!
 − ^e�T(")  
(10)

Let’s define g(
) and \]]⃗  as the instantaneous wetted surface and unit normal 

vector, respectively. The total fluid force and moment in the fixed reference axes 

can be expressed as follows: 

hi(
) � − j A\]]⃗ =P 
k(�)

 (11)

lm(
) � − j A[(�⃗ − �⃗W) × \]]⃗ ]=P 
k(�)

 (12)

By using the perturbation series analysis of Eqs. (11) and (12), over the wetted 

surface g(
), the second-order wave exciting force and moment can be calculated 

in the following manner [1]: 
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h⃗(") � − 12 ^e p U�(�). U�(�),]⃗ =q 
rs

 Water line integral 

(13)

� 12 ^ jt∇Φ(�). ∇Φ(�)u 
NO

,]⃗ =P Bernoulli 

� ^ j v�⃗(�). ∇ !Φ(�)
!
 w 

NO
,]⃗ =P Acceleration 

� X⃗(�) × h⃗(�) Momentum 

� ^ j !Φ(")
!


 
NO

,]⃗ =P Second-order potential 

l]]⃗ (") � − 12 ^e p U�(�). U�(�)(�⃗ × ,]⃗ )=q 
rs

 Water line integral 

(14)

� 12 ^ jt∇Φ(�). ∇Φ(�)u 
NO

(�⃗ × ,]⃗ )=P Bernoulli 

� ^ j v�⃗(�). ∇ !Φ(�)
!
 w 

NO
(�⃗ × ,]⃗ )=P Acceleration 

� X⃗(�) × l]]⃗ (�) Momentum 

� ^ j !Φ(")
!


 
NO

(�⃗ × ,]⃗ )=P Second-order potential 

where PV is the mean wetted surface, U�(�) � U(�) − �T rs(�)
 is the relative wave  

elevation along the mean undisturbed water line, h⃗(�) and l]]⃗ (�) are the total first  

order fluid force and moment, respectively. 

2.3. Equations of motion 

Through the interaction of the body motion within frequency dependent hydro-

dynamic coefficients, a set of linear motion equations can be derived as follows: 

 t−�x"(lk � ly) − ��xz � {|}kut��u � th�u (15) 

In Eq. (15), lk is a 6×6 body mass matrix, ly � t~�,�u and z � [��,�] are  

the 6×6 hydrodynamic added mass and damping matrices, {|}k is hydrostatic 

stiffness matrix. h� is the total forces and moments. �x is the encountering fre-

quency, and the encountering period is �x � "���. Here, in our case, the wave period 

and encountering period are the same (�x � �).  
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3. Numerical results  

3.1. Validation 

In this paper for verification purposes, the experimental test results of the  

restrained cylinder body are used as representative of a vertical cylinder [17]. The 

experimental work for the restrained body carried out at the offshore water wave 

basin of the Danish Hydraulic Institute (DHI). This basin is 3 m in depth, 30 m  

in length and 20 m in width and includes a hydraulic flap wave maker. As shown in 

Figure 3, the model was placed in the basin by using the triangular shaped rigid rig.  

 

             

Fig. 3. a) Photo of tested body [17]. b) Schematic model (dimensions in mm) 

The applied mean drift forces in the heave and surge directions, due to radiation 

of the monochromatic wave, were measured. Table 1 shows the range of the  

incident wave periods according to [17]. 

Table 1. Characteristics of the monochromatic tested waves 

Wave index Period [s] Amplitude [cm] 

1 0.70 1.1 

2 0.90 1.6 

3 1.10 2.2 

4 1.15 2.3 

5 1.35 2.9 

6 1.75 4.0 

7 1.90 4.4 

8 2.00 4.7 

9 2.20 4.8 

10 1.55 3.4 

 

Figure 4 shows the comparison of the non-dimensional drift force coefficients 

(h"-�), heave and surge drift forces as function of the wave period. The forces are 

non-dimensionalized as: 
�����W��s, where g, ^ and A are gravity acceleration, fluid 

density and wave amplitude, respectively. L is defined as characteristic length and 

a) b) 
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is considered equal to 1

experimental drift force of the restrained cylinder body in 

directions. The results show that there 

results and experimental data.
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is considered equal to 1 m. Figure 4 shows the comparison of the numerical and 

experimental drift force of the restrained cylinder body in both surge and heave 

directions. The results show that there is good agreement between the numerical 

results and experimental data. 

   
Fig. 4. Comparison of non-dimensional drift force for surge and heave motions

of draft and radius 
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Fig. 5. Drift forces on a floating cylinder versus different drafts (constant radius)
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As shown in Figure 5, by increasing the draft in the constant radius, the amount 

of drift force on a floating cylinder in surge direction at first increased and reached 

a maximum value of 1.43 in both 1.5 m and 1.75 m draft cylinders, then the amount 

of exerted force gradually declines by almost 70% in a 2.75 m draft.  

 

       

 
Fig. 6. Drift forces on a floating cylinder versus different radiuses (constant draft) 

According to Figure 6 with rising radiuses of cylinders in the constant draft, the 

values of the drift force are decreased in all three directions of the surge, heave and 

pitch, while the period of maximum force remained constant at about 3.75 s. It can 

be seen that by increasing the radius from 1.6 m to 2.4 m, the drift force is reduced 

by nearly 45% in both surge and pitch directions, while in heave direction, 85% re-

duction is visible. The results are summarized in Figure 7. 

 

       
Fig. 7. Maximum drift forces on a floating cylinder versus different radiuses and drafts 
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4. Conclusion  

This paper is presented to calculate the drift forces of the single floating cylinder 

with different drafts and radiuses. The following conclusions can be drawn: 

 The numerical results show good agreement with experimental data for drift 

force of surge and heave motions.  

 The maximum drift force occurrs at the period 3.75 s for all drafts of a cylinder. 

The lower drafts make more force.  

 The effect of the radius is different. By increasing the radius, the maximum drift 

forces are obtained at different periods. 
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