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Abstract. In this investigation, the analogy between thermal and mass diffusive effects of
a free convective flow in a rectangular enclosure is emphasized. The upwind finite volume
method is used to discretize the governing equations of the continuity, momentum, energy
and mass transfer. The novelty in this exploration is to appropriately modify the well-known
Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) algorithm so that it suits
to the present problem and thereby, the new flow variables such as the temperature and the
concentration are computed. An empirical correlation for the average Sherwood number (Sh)
that does not exist in literature is suggested in this work. The average Sherwood numbers
for distinct fluids (gases and liquids) are calculated, and mass diffusion effects within
the horizontal rectangle are analyzed. The average Nusselt numbers (Nu) are calculated
for distinct fluids such as liquids (Pr� 1), liquid metals (Pr� 1) and gases (Pr < 1) for
different Rayleigh numbers in the range of 3×105 ≤ RaL ≤ 7×109 from relevant empirical
correlations existing in the literature. Accordingly, the thermal diffusion effects within
the horizontal rectangle are analyzed.
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1. Introduction

Research on thermal and mass diffusion of free convection in a rectangular en-
closure has drawn the curiosity of a great number of researchers due to its extensive
applications such as humidity in air and in buildings, cooling towers, electronic cool-
ing systems, cooling of mini channels in the blades of a modern gas turbine.

Combined free and forced convection of a two-dimensional, steady, incompress-
ible flow in a driven horizontal rectangle was investigated by Alleborn et al. [1].
The impact of thermal boundary conditions on free convective flow in a rectangular
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enclosure was studied numerically by Corcione [2]. Momentum and heat transport
in a conjugate free convective flow by using streamline and heatline was numerically
visualized by Deng and Tang [3]. Free convective flow in a rectangular enclosure
by using a combined temperature scale was numerically studied by Deng et al. [4].
Heat and mass transfer effects of a combined free and forced convective flow in
a vertical rectangle was studied by Teamah and Maghlany [5]. Globe and Dropkin [6]
have investigated natural convective heat transfer in liquids confined by two horizon-
tal plates heated from below and proposed some empirical correlations for Nusselt
numbers for different Rayleigh numbers. Hollands et al. [7] have proposed empirical
correlations for the Nusselt number of a free convective air and water flow in a hori-
zontal rectangular region. Hoseinzadeh et al. [8] have presented the solution to con-
tinuity and the Navier-Stokes equations by using the Revised Semi-Implicit Method
for the Pressure-Linked Equations (SIMPLER) algorithm, and the same has been uti-
lized for solving the square cavity problems. Hoseinzadeh et al. [9] have investigated
numerically the rectangular thermal energy storage units with multiple phase change
materials. A comparison of analytical and numerical methods of thermal analysis of
rectangular cross-section porous fins enclosure was investigated by Hoseinzadeh et
al. [10,11]. Hoseinzadeh et al. [12] have investigated numerically the heat transfer of
a laminar and turbulent pulsating Al2O3/water nanofluid flow. The problem of free
convective flow in a rectangular enclosure in the presence of four discrete heaters was
investigated by Nithyadevi et al. [13]. Patankar and Spalding [14] have introduced
a benchmark method for calculating the flow variables linked to a three-dimensional
mass, momentum and energy equations. Saglam et al. [15] have investigated numer-
ically and experimentally the problem of free convection in an enclosure fitted with
heat sources. Steady free convective flow in a rectangular region with wall heat and
concentration sources was studied by Vusala and Basumatary [16].

Motivation to this current exploration is due to non-existence of mass transfer
analysis of a free convective flow in rectangular enclosure, as revealed by the existing
literature. Furthermore, for this kind of flow, an appropriate dimensionless number
such as the average Sherwood number (Sh) being used for examining the mass trans-
fer is not yet available. Therefore, under these circumstances, the real challenge is
to come up with appropriate correlations for the mass transfer dimensionless number
and the average Sherwood number. However, for studying the mass transfer effects,
no correlations for the average Sherwood number exist in the literature. Therefore,
motivation to this current study by this objection and in this study, correlations for the
average Sherwood number are suggested. Nevertheless, as per existing literature, for
the purpose of the heat transfer study, definite empirical correlations are available for
average Nusselt number (Nu) of a natural convection in rectangle enclosures. Thus,
the numerical solutions of the average Nusselt and Sherwood numbers are computed
and the aspects of combined heat and mass transfer of natural convection in rectan-
gular enclosure are studied.

The novelty in this current problem is to properly amend the well-known Semi-
Implicit Method for Pressure-Linked Equations (SIMPLE) algorithm and thereby,
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we are able to compute the new flow variables such as the temperature (θ ), the con-
centration (C) in addition to the velocity and the pressure. The other innovations
included in the present problem are deriving the discretized energy, mass transfer
equations and by analogy, an empirical correlation for average Sherwood number
is suggested that enables us to analyze the mass transfer.

The aim of this paper is to discretize the governing equations by using the up-
wind finite volume scheme. The original SIMPLE algorithm put forth by Patankar
and Spalding [14] has been modified appropriately and, consequently, the new flow
variables such as the temperature, concentration are computed. An empirical corre-
lation for the average Sherwood number is suggested and thereby the nature of the
mass transfer in a horizontal rectangle is analyzed. We calculate the average Nus-
selt number by using the empirical correlation that exist in the literature [17] and
thereby discuss the nature of the heat transfer within the rectangle. The validity of
the present numerical solutions obtained from the empirical correlations which are
being suggested in this study and as well as from those existing in the literature is
guaranteed.

2. Formulation

2.1. Description

The schematic illustration about free convective flow in a rectangular region with
a heat and a mass source placed on its lower wall is shown in Figure 1. Consider
a rectangular region denoted by ABCD that is of length H and height L in which free
convective flow is considered. For the purpose of maintaining free convection within
ABCD, no-slip boundary conditions for velocity are defined on these walls. Let Th
and Tc, ch and cc be the temperature and the concentration flow variables defined on
the bottom and the top wall. Due to the difference in temperature defined by T = Th
and T = Tc on the bottom and the top wall, the free convective flow is sustained within
the rectangle. Similarly, due to the difference in concentration defined by c = ch
and c = cc on the bottom and the top wall, mass diffusion effects prevails within
the rectangular region [16].

Fig. 1. Schematic of the problem
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2.2. Governing equations

Free convective flow with thermal and mass diffusion effects is governed by the
equation of continuity, X and Y components of the momentum equation, the energy
and the mass transfer equation written in dimensional form as follows [16]:

continuity equation:
∂U
∂X

+
∂V
∂Y

= 0, (1)

X-momentum equation: U
∂U
∂X

+V
∂U
∂Y

=− 1
ρ

∂ p
∂X

+ν

(
∂ 2U
∂X2 +

∂ 2U
∂Y 2

)
, (2)

Y -momentum equation: U
∂V
∂X

+V
∂V
∂Y

=− 1
ρ

∂ p
∂Y

+ν

(
∂ 2V
∂X2 +

∂ 2V
∂Y 2

)
+gβT (T −Tc)+gβc(c− cc), (3)

energy equation: U
∂T
∂X

+V
∂T
∂Y

= α

(
∂ 2T
∂X2 +

∂ 2T
∂Y 2

)
, (4)

mass transfer equation: U
∂c
∂X

+V
∂c
∂Y

= D
(

∂ 2c
∂X2 +

∂ 2c
∂Y 2

)
(5)

where U , V , X , Y , p, T , c, ρ , α , ν , g, βT , βc, Tc, cc and D are the dimensional velocity
components along X and Y -directions, independent variables, pressure, temperature,
concentration, density, thermal diffusivity, kinematic viscosity, acceleration due to
gravity, coefficient of thermal expansion at constant temperature, coefficient of ther-
mal expansion at constant concentration, temperature of the cold wall, concentration
of the cold wall and mass diffusivity respectively. We introduce the dimensionless
variables as follows [17] and [16]:

(x,y) =
(X ,Y )

L
, (u,v) =

(U,V )L
ν

, P =
pL2ρ

µ2 , θ =
T −Tc

Th−Tc
, C =

c− cc

ch− cc
, Pr =

ν

α
,

Sc =
ν

D
, Le =

Sc
Pr

, GrT =
gβT (Th−Tc)

ν2 L3, GrC =
gβc(ch− cc)

ν2 L3 (6)

where x, y, L, u, v, P, µ θ , C, GrT , Grc, Pr and Le, Sc are dimensionless inde-
pendent variables along X and Y directions, height of the rectangle, dimensionless
velocity components along X and Y -directions, dimensionless pressure, coefficient
of dynamic viscosity, dimensionless temperature, dimensionless concentration, the
Grashof number with reference to the temperature and concentration respectively,
the Prandtl number, the Lewis number and the Schmidt number. The subscripts h,
and c, represents the hot and cold conditions [17] and [16].
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The dimensional boundary conditions for the governing equations (1)-(5) are:

on AB: at X = 0, U =V = 0,
∂T
∂X

= 0,
∂c
∂X

= 0,

on DC: at X = H, U =V = 0,
∂T
∂X

= 0,
∂c
∂X

= 0,

on BC: at Y = 0, U =V = 0, T = Th, c = ch,

on AD: at Y = L, U = 0, V = 0, T = Tc, c = cc,


(7)

Where H and L are the length and height of the horizontal rectangle.
Using the dimensionless variables, the governing equations (1)-(5) become as:

continuity equation:
∂u
∂x

+
∂v
∂y

= 0, (8)

x-momentum equation: u
∂u
∂x

+ v
∂u
∂y

=−∂P
∂x

+

(
∂ 2u
∂x2 +

∂ 2u
∂y2

)
, (9)

y-momentum equation: u
∂v
∂x

+ v
∂v
∂y

=−∂P
∂y

+

(
∂ 2v
∂x2 +

∂ 2v
∂y2

)
+GrT θ +GrcC, (10)

energy equation: u
∂θ

∂x
+ v

∂θ

∂y
=

1
Pr

(
∂ 2θ

∂x2 +
∂ 2θ

∂y2

)
, (11)

mass transfer equation: u
∂C
∂x

+ v
∂C
∂y

=
1

LePr

(
∂ 2C
∂x2 +

∂ 2C
∂y2

)
, (12)

where x, y, u, v, P, θ , C, GrT , Grc, Pr and Le are dimensionless independent variables
along X and Y directions, velocity components along x and y-axis, dimensionless
velocity components along X and Y -directions, dimensionless pressure, dimension-
less temperature, dimensionless concentration, the Grashof number with reference
to the temperature and concentration, the Prandtl number and the Lewis number.
The subscripts h, and c, represent the hot and cold conditions [17] and [16].

The dimensionless form of the above boundary conditions reducing to:

on AB: at x = 0, u = v = 0,
∂θ

∂x
= 0,

∂C
∂x

= 0

on DC: at x = 2, u = v = 0,
∂θ

∂x
= 0,

∂C
∂x

= 0

on BC: at y = 0, u = v = 0, θ = 1, C = 1,

on AD: at y = 1, u = 0, v = 0, θ = 0, C = 0.


(13)

where AB, DC, BC, and AD are the left, right, bottom and top walls of the rectangle.
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3. Numerical method

3.1. Discretization technique

We have utilized the upwind finite volume scheme and a staggered grid as given in
[18, p. 194-200] and [16] to discretize the governing equations (7)-(11). This scheme
is more appropriate here because it satisfies the conservativeness, boundedness and
transportiveness properties and hence it gives accurate solutions. Complexities
involved in the governing equations such as non-linearities and coupling of pressure-
velocity compels us to adopt an iterative solution strategy. Furthermore, in addition
to the pressure, two more scalar variables, the temperature and the concentration are
appearing due to the energy and mass transfer equations. Hence, we need a unique
grid(a staggered grid) that allows us to define all scalar variables at the scalar nodes
and the vector variables at the interfaces in horizontal and vertical directions of the
control volumes constructed around these scalar nodes. This unique feature of a stag-
gered grid enables us to discretize the governing equations suitably on it and also to
evaluate the conductive fluxes and the diffusive conductances of the coefficients in
the momentum, energy and mass transfer equations at the interfaces of the control
volumes.

Fig. 2. Staggered grid arrangement

Continuity equation: The discretized continuity equation at location (I,J) is given
by [16]

Fe−Fw +Fn−Fs = 0 (14)

where Fe, Fw, Fn, Fs are the fluxes across the east, west, north and south cell faces of
the control volume.
x-momentum: The discretized u-momentum equation at location (i,J) is given by

ai,Jui,J = ∑anbunb +(PI−1,J−PI,J)Ai,J (15)

where Ai,J is the cell face areas of u-control volume. E, W , N, S neighbors involved
in the summation are ∑anbunb are (i + 1,J), (i− 1,J), (i,J + 1) and (i,J − 1) in
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accordance with [18, p. 197-199] and [16]. The coefficients of the upwind differenc-
ing scheme are

ai,J = ai−1,J +ai+1,J +ai,J+1 +ai,J−1 +∆F (16)

where

ai+1,J = DI,J +max(−FI,J,0), ai−1,J = DI−1,J +max(FI−1,J,0),

ai,J+1 = Di, j+1 +max(−Fi, j+1,0), ai,J−1 = Di, j +max(Fi, j,0),

∆F = (Fe−Fw)+(Fn−Fs) = (FI,J−FI−1,J)+(Fi, j+1−Fi, j)


The convective flux per unit mass F and the diffusive conductance D for each of the
faces e, w, n and s of the u-control volume are defined as given in [16, p. 10].
y-momentum: The discretized v-momentum equation at (I, j) is given by

aI, jvI, j = ∑anbvnb +(PI,J−1−PI,J)AI, j +bI, j (17)

where Ai,J is the cell face areas of v-control volume. The neighbours E, W , N and S
involved in the summation ∑anbvnb are (I+1, j), (I−1, j), (I, j+1) and (I, j−1) in
accordance with [18, p. 199-200] and [16].

Now the coefficients of the upwind differencing scheme are as follows:

aI, j = aI+1, j +aI−1, j +aI, j+1 +aI, j−1 +∆F−SI, j (18)

and

SI, jvI, j +bI, j = S̄∆v (19)

Similarly, these coefficients contain a combination of the convective flux per unit
mass F and the diffusive conductance D for each of the faces e, w, n and s of the
v-control volume.

The pressure correction equation is given by

aI,JP
′
I,J = aI+1,JP

′
I+1,J +aI−1,JP

′
I−1,J +aI,J+1P

′
I,J+1 +aI,J−1P

′
I,J−1 +b

′
I,J (20)

where

aI,J = aI+1,J +aI−1,J +aI,J+1 +aI,J−1

and the coefficients are

aI+1,J = (dA)i+1,J, aI−1,J = (dA)i,J,

aI,J+1 = (dA)I, j+1, aI,J−1 = (dA)I, j,

di,J =
Ai,J

ai,J
, dI, j =

AI, j

aI, j

b
′
I,J = (u∗A)i,J− (u∗A)i+1,J +(v∗A)I, j− (v∗A)I, j+1


(21)



12 V. Ambethkar

The equation (20) represents the discretized continuity equation evaluated in terms of
pressure correction P

′
in accordance with [18, p. 202] and [16]. There is a continuity

imbalance in the source term b
′

in this equation due to utilization of the guessed
velocities u∗ and v∗.
Energy equation: The discretized energy equation at (I,J) is given by [16]

aI,JθI,J = ∑anbθnb (22)

The coefficients of the upwind differencing scheme are

aI,J = aI+1,J +aI−1,J +aI,J+1 +aI,J−1 +∆F (23)

These coefficients contain a combination of the convective flux per unit mass F and
the diffusive conductance D for each of the faces e, w, n and s of the p-control volume
are defined in [16, p. 11].

Mass transfer equation: The discretized mass transfer equation at (I,J) is given
by [16]

aI,JCI,J = ∑anbCnb (24)

The coefficients of the upwind differencing scheme are

aI,J = aI+1,J +aI−1,J +aI,J+1 +aI,J−1 +∆F (25)

These coefficients contain a combination of the convective flux per unit mass F and
the diffusive conductance D for each of the faces e, w, n and s of the p-control volume
are defined in [16, p. 11].

3.2. Numerical calculations

The real difficulty in the calculation of the velocity field lies in the unknown pres-
sure field. There is no separate equation for determining the pressure variable except
the pressure term in gradient form in the momentum equations. Other difficulties
in the governing equations is non-linearity in the momentum equations, coupling of
pressure-velocity which introduces a constraint in the solution of the flow field. Fur-
thermore, in addition to the pressure, two more scalar variables, the temperature and
the concentration appear due to the energy and mass transfer equations. A remedy
for such difficulties associated with the governing equations as mentioned above is to
adopt an iterative solution procedure such as the Semi-Implicit Method for Pressure-
Linked equation (SIMPLE) algorithm in modified form for determining the numeri-
cal solutions of flow variables u, v, P, θ and C iteratively. We have accomplished this
with the help of an improved Semi-Implicit Method for Pressure-Linked Equations
(SIMPLE) algorithm and a code executed in C.
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Improved SIMPLE algorithm

The well-known Semi-Implicit Method for Pressure-Linked Equations (SIMPLE)
algorithm [18, p. 204] has been improved appropriately here and by that, we have
computed the temperature and the concentration variables in addition to the other
flow variables such as the velocity and the pressure. A summary of this improved
algorithm is given below [16]:

Step 1 Start with guessed velocities (u∗,v∗) pressure field P∗, temperature θ
∗ and

concentration C∗.
Step 2 Calculate the coefficients in the momentum equation, solve discretized mo-

mentum equations.
Step 3 Calculate the coefficients of pressure equation, solve pressure correction equa-

tions.
Step 4 Correct pressure and velocities:

PI,J = P∗I,J +P
′
I,J,

ui,J = u∗i,J +di,J(P
′
I−1,J−P

′
I,J),

vI, j = v∗I, j +dI, j(P
′
I,J−1−P

′
I,J).

 (26)

Step 5 Solve temperature and concentration discretized equations.
Step 6 Replace the previous intermediate values of pressure, velocity, temperature

and concentration (P∗,u∗,v∗,θ ∗,C∗) with the corrected values (P,u,v,θ ,C),
return to Step 2 and repeat this process until the solution converges.

4. Analysis of results

In the present investigation, our chief concern is to suggest correlations for the
average Sherwood numbers and thereby, we are capable of analyzing the nature
of the mass diffusion effects within the rectangular enclosure. Moreover, as the
title of this present study indicates, we ought to explore the nature of the heat
diffusion effects within the rectangular enclosure. We have accomplished this due
to a definite empirical correlation available for the average Nusselt number in the
literature. As we have stated in the preceding section, the well-known Semi-Implicit
Method for Pressure-Linked Equations (SIMPLE) algorithm [18, p. 204] has been
improved appropriately here and by that, we could compute the temperature and the
concentration variables in addition to the other flow variables such as the velocity
and the pressure. Nevertheless, we are not describing here the profiles of these flow
variables due to its less significance, as it is not our main target in this study.

As we have pronounced in the abstract of this study, our target is to determine
the total heat transfer from the lower wall of the rectangular region as shown in Fig-
ure 1, and is determined from the average Nusselt number Nu which is defined as
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Nu =
h̄L
k

, where h̄ is the average convection coefficient and k is the thermal con-
duction. The average Nusselt number represents the overall convection heat trans-
fer occurring at the entire bottom wall of the rectangular enclosure. The average
Nusselt numbers Nu for these fluids are calculated by using the empirical correla-
tions Nu = 0.069(RaL)

1
3 Pr0.074;3× 105 ≤ RaL ≤ 7× 109 for free convective heat

transfer in horizontal rectangular enclosures as proposed by Hollands et al. [7]. We
have calculated the average Nusselt numbers (Nu) for distinct fluids such as liquids
(Pr � 1), liquid metals (Pr � 1) and gases (Pr < 1) for different Rayleigh num-
bers in the range of 3×105 ≤ RaL ≤ 7×109, where RaL is defined as RaL = GrLPr
is the heat transfer Rayleigh number. The Prandtl number (Pr) is used to measure
the relative effectiveness of momentum and thermal energy transport by diffusion in
the velocity and thermal boundary layers. These average Nusselt numbers for liq-
uids, liquid metals and gases obtained are sketched in Figure 3 which is given be-
low. The average Nusselt numbers for liquids (Pr� 1) such as water (Pr = 4.34),
engine oil (Pr = 47,000) and Glycerine (Pr = 87,000) are calculated for differ-
ent Rayleigh numbers in the range of 3× 105 ≤ RaL ≤ 7× 109 and are sketched
in Figure 3a. From this figure, it is observed that for a particular liquid such as
water (Pr = 4.34), as the Rayleigh number increases in the range of 3×105 ≤ RaL ≤
7× 109, the average Nusselt number increases uniformly. Similarly, for the other
two liquids such as engine oil (Pr = 47,000) and Glycerine (Pr = 87,000), as the
Rayleigh number increases in the range of 3× 105 ≤ RaL ≤ 7× 109, the average
Nusselt number increases uniformly. Furthermore, from Figure 3a, it is observed
that at any particular Rayleigh number in the range of 3× 105 ≤ RaL ≤ 7× 109, as
the Prandtl number increases for these liquids, the average Nusselt number increases
uniformly. Thus, the rate of heat diffusion from the bottom wall to the top wall of
the rectangular region containing a free convective flow increases for different liquids
such as water (Pr = 4.34), engine oil (Pr = 47,000) and Glycerine (Pr = 87,000).

The average Nusselt numbers for liquid metals (Pr� 1) such as sodium (Pr =
= 0.0066), potassium (Pr = 0.0083), lead (Pr = 0.0110), bismuth (Pr = 0.0142) and
mercury (Pr = 0.029) are calculated for different Rayleigh numbers in the range of
3×105≤RaL≤ 7×109 and are sketched in Figure 3b. From this figure, it is observed
that for any particular liquid metal among sodium (Pr = 0.0066), potassium (Pr =
= 0.0083), lead (Pr = 0.0110), bismuth (Pr = 0.0142) and mercury (Pr = 0.029),
as the Rayleigh number increases in the range of 3×105 ≤ RaL ≤ 7×109, the aver-
age Nusselt number increases uniformly. Furthermore, from Figure 3b, it is observed
that, at any particular Rayleigh number in the range of 3× 105 ≤ RaL ≤ 7× 109,
as the Prandtl number increases for these liquid metals, the average Nusselt num-
ber increases uniformly. For gases (Pr < 1) such as hydrogen, water vapour, oxygen
and carbon dioxide, the thermal diffusivity dominates than the momentum diffusiv-
ity. The average Nusselt numbers for gases (Pr < 1) such as hydrogen (Pr = 0.684),
oxygen (Pr = 0.733), carbon dioxide (Pr = 0.76) and air (Pr = 0.7869) are cal-
culated for different Rayleigh numbers in the range of 3× 105 ≤ RaL ≤ 7× 109
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Fig. 3. Average Nusselt number for liquids, liquid metals and gases

and are sketched in Figure 3c. From this figure, it is observed that for any par-
ticular gas among hydrogen (Pr = 0.684), oxygen (Pr = 0.733), carbon dioxide
(Pr = 0.76) and air (Pr = 0.7869), as the Rayleigh number increases in the range
of 3× 105 ≤ RaL ≤ 7× 109, the average Nusselt number increases uniformly. Fur-
thermore, from Figure 3c, it is observed that, at any particular Rayleigh number in the
range of 3× 105 ≤ RaL ≤ 7× 109, as the Prandtl number increases for these gases,
the average Nusselt number increases uniformly. Therefore, the rate of heat diffusion
increases from the bottom wall to the top wall of the rectangular region for different
liquid metals and gases as mentioned above.

As we have declared in the beginning that our target and contribution in this study
is to ascertain the total mass transfer from the lower wall of the rectangular region and

is evaluated from the average Sherwood number Sh which is defined as ShL =
h̄mL
D

,

where h̄m is the average convection mass transfer coefficient and D is the mass diffu-
sivity. We are able to accomplish all this due to the analogy of empirical correlations
persisting among the combined thermal and mass diffusive effects of a free convective
flow. The average Sherwood number represents the overall convection mass transfer
that occurs at the entire bottom wall of the rectangular enclosure. The average Sher-
wood numbers Sh for distinct fluids such as gases (Sc� 1 and Sc < 1) and liquids
(Sc > 1 ) are calculated by using the empirical correlation suggested by the present
author in this study which is ShL = 0.069(Ram,L)

1
3 Sc0.074;3×105 ≤ Ram,L ≤ 7×109,
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where Ram,L = GrcSc is the mass transfer Rayleigh number. By using this corre-
lation, we have calculated the average Sherwood numbers Sh for these fluids at
different Rayleigh numbers in the range of 3× 105 ≤ Ram,L ≤ 7× 109. We have
appropriately chosen the Schmidt numbers (Sc) for the species of different gases
and liquids mentioned below at a low concentration of 1 atm and 25◦C (approx.) and
obtained the values of the average Sherwood numbers which are sketched in Figure 4
as given below. The average Sherwood numbers for gases (Sc� 1) such as hydrogen
(Sc = 152), oxygen (Sc = 356) and carbon dioxide (Sc = 453) are calculated for dif-
ferent Rayleigh numbers in the range of 3×105 ≤ Ram,L ≤ 7×109 and are sketched
in Figure 4a. It is observed from this figure that at two Rayleigh numbers like 3×109

and 7× 109, for a particular gas such as hydrogen (Sc = 152), the average Sher-
wood number increases, and the same is true even for any of the Rayleigh number
in the range of 3× 105 ≤ Ram,L ≤ 7× 109. Similarly, at two Rayleigh numbers like
3×109 and 7×109, for the other two gases like oxygen (Sc = 356) and carbon diox-
ide (Sc = 453), the average Sherwood number increases uniformly, and the same is
true even for any of the Rayleigh numbers in the range of 3×105 ≤ Ram,L ≤ 7×109.
Furthermore, from Figure 4a, it is observed that at any particular Rayleigh number
among 3× 105 ≤ Ram,L ≤ 7× 109, as the Schmidt number increases among these
gases, the average Sherwood number increases uniformly. Hence, it is concluded
that the rate of mass diffusion from the bottom wall to the top wall of the rectangular
region containing a free convective flow increases for different gases such as those
mentioned above.

The average Sherwood numbers Sh for gases (Sc < 1) for different Rayleigh num-
bers in the range of 3× 105 ≤ RaL ≤ 7× 109 are calculated by using the empiri-
cal correlation suggested by the present author in the above-mentioned paragraph.
The Schmidt number (Sc) is used to measure the relative effectiveness of momen-
tum and mass transport by diffusion in the velocity and concentration boundary
layers. For a different species at low concentration in gases (Sc < 1) such as hy-
drogen, water vapour, oxygen and carbon dioxide, the mass diffusivity dominates
the momentum diffusivity. The average Sherwood numbers for gases (Sc < 1) such
as hydrogen (Sc = 0.22), water vapour (Sc = 0.60) oxygen (Sc = 0.75) and carbon
dioxide (Sc = 0.94) are calculated for different Rayleigh numbers in the range of
3×105 ≤ RaL ≤ 7×109 and are sketched in Figure 4b. It is observed from this fig-
ure that at two Rayleigh numbers like 3× 109 and 7× 109, for a particular gas such
as hydrogen (Sc = 152), the average Sherwood number increases and the same is
true even for any of the Rayleigh number in the range of 3×105 ≤ Ram,L ≤ 7×109.
Similarly, at two Rayleigh numbers like 3× 109 and 7× 109, for other gases such
as water vapour (Sc = 0.60), oxygen (Sc = 0.75) and carbon dioxide (Sc = 0.94),
the average Sherwood number increases uniformly and the same is true even for
any of the Rayleigh numbers in the range of 3× 105 ≤ Ram,L ≤ 7× 109. Further-
more, from Figure 4b, it is observed that, at any particular Rayleigh number among
3× 105 ≤ Ram,L ≤ 7× 109, as the Schmidt number increases among these gases,
the average Sherwood number increases uniformly. Hence, it is concluded that the
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Fig. 4. Average Sherwood numbers for gases and liquids

rate of mass diffusion from the bottom wall to the top wall of the rectangular region
increases for different gases such as those mentioned above.

Analogously, the average Sherwood numbers Sh for liquids (Sc > 1) such as ethyl
alcohol (Sc = 1.30), ether (Sc = 1.66), benzene (Sc = 1.76) and ethyl benzene (Sc =
= 2.01) for different Rayleigh numbers in the range of 3× 105 ≤ Ram,L ≤ 7× 109

are calculated and are sketched in Figure 4c. The momentum diffusivity dominates
the mass diffusivity for different species at low concentration in liquids (Sc > 1) such
as ethyl alcohol, ether, benzene and ethyl benzene. From Figure 4c, it is observed
that at two Rayleigh numbers like 3×109 and 7×109, for a particular liquid such as
ethyl alcohol (Sc = 1.30), the average Sherwood number increases, and the same is
true even for any of the Rayleigh numbers in the range of 3×105 ≤ Ram,L ≤ 7×109.
Similarly, at two Rayleigh numbers like 3× 109 and 7× 109, for any other liquids
such as ether (Sc = 1.66), benzene (Sc = 1.76) and ethyl benzene (Sc = 2.01), the
average Sherwood number increases uniformly and the same is true even for any of
the Rayleigh number in the range of 3×105 ≤ Ram,L ≤ 7×109. Furthermore, from
Figure 4c, it is observed that at any particular Rayleigh number as 3× 109, 7× 109

or else among 3× 105 ≤ Ram,L ≤ 7× 109, as the Schmidt number increases among
these liquids, the average Sherwood number increases uniformly. Thus, the rate of
mass diffusion from the bottom wall of the rectangular region increases for different
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liquids such as ethyl alcohol, ether, benzene and ethyl benzene for different Rayleigh
numbers in the range of 3×105 ≤ Ram,L ≤ 7×109.

5. Conclusions

In this paper, empirical correlations for the average Sherwood numbers (Sh) are
suggested and consequently, the nature of the mass diffusion effects within the con-
centration boundary layer is analyzed. The average Sherwood number represents the
overall convection mass transfer occurs at the entire bottom wall of the rectangular
enclosure. The Schmidt number (Sc) is used to measure the relative effectiveness of
momentum and mass transport by diffusion in the velocity and concentration bound-
ary layers. The mass diffusivity dominates the momentum diffusivity for different
species at low concentration in gases (Sc < 1) such as hydrogen, water vapour, oxy-
gen and carbon dioxide. Therefore, from the calculated average Sherwood numbers
proposed in this study, it is concluded that the rate of mass diffusion from the bottom
wall to the top wall of the rectangular region for these gases increases for different
mass transfer Rayleigh numbers in the range of 3× 105 ≤ Ram,L ≤ 7× 109. Analo-
gously, the momentum diffusivity dominates the mass diffusivity for different species
at low concentration in liquids (Sc> 1) such as ethyl alcohol, ether, benzene and ethyl
benzene. Therefore, from the calculated average sherwood numbers proposed in this
study, it is concluded that the rate of mass diffusion from the bottom wall to the top
wall of the rectangular region for these liquids increases for different mass transfer
Rayleigh numbers in the range of 3×105 ≤ Ram,L ≤ 7×109. This behaviour could
also be seen as the Schmidt number increases among liquids, the average Sherwood
number increases uniformly and hence the rate of mass diffusion from the bottom
wall to the top wall of the rectangular region increases.

The nature of the thermal diffusion effects in the velocity boundary layer of a free
convective flow within the horizontal rectangle is analyzed by making use of the exist-
ing empirical correlations for the average Nusselt numbers (Nu) which are mentioned
in the preceding discussion. The average Nusselt number represents the overall con-
vection heat transfer occurring at the entire bottom wall of the rectangular enclosure.
The Prandtl number (Pr) is used to measure the relative effectiveness of momentum
and thermal energy transport by diffusion in the velocity and thermal boundary lay-
ers. The thermal diffusivity dominates the momentum diffusivity in gases (Pr < 1)
such as hydrogen, water vapour, oxygen and carbon dioxide. Hence, from the calcu-
lated average Nusselt numbers, it is concluded that the thermal diffusion effects from
the bottom wall to the top wall of the rectangular region for these gases increases for
different heat transfer Rayleigh numbers in the range of 3× 105 ≤ RaL ≤ 7× 109.
Analogously, the momentum diffusivity dominates the thermal diffusivity in liquids
(Pr > 1) such as water, engine oil and glycerine. Hence, from the calculated average
Nusselt numbers, it is concluded that the thermal diffusion effects from the bottom
wall to the top wall of the rectangular region for these liquids increases for different
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heat transfer Rayleigh numbers in the range of 3×105≤RaL≤ 7×109. Furthermore,
the thermal diffusivity dominates the momentum diffusivity for any particular liquid
metal (Pr� 1) such as sodium potassium, lead, bismuth and mercury. The effect of
momentum diffusivity is almost negligible on the thermal diffusivity. Consequently,
the calculated average Nusselt numbers are observed to increase uniformly and there-
fore, thermal diffusion effects from the bottom wall to the top wall of the rectangular
region increases for these liquids metals as the Rayleigh number increases in the
range of 3×105 ≤ RaL ≤ 7×109.
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