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Abstract. The aim of the study was to analyze changes in tissue oxygen distribution result-

ing from temperature changes by the use of the Krogh cylinder model with Michaelis- 

-Menten kinetics. A Hill model was also used to describe the oxyhemoglobin dissociation 

curve. In particular, variable values of parameters of dissociation curve and blood velocity 

in capillary were considered. Mathematical description was based on two separate  

equations for radial and axial directions. An additional task related to determination of  

the temperature, tissue thermal damage and perfusion was also solved. At the stage of  

numerical realization, the finite difference method was used. 
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1. Introduction  

Oxygen is an essential element for life. It is closely related to the release of  

energy at the cellular level, so it goes without saying that all vital activities of  

life depend on its presence. It is obtained in the lungs and then transported through 

the circulatory system to pass into the tissues from the blood in the capillaries.  

The oxygen content in individual tissues is not constant and may vary depending 

on many factors, such as the degree of activity of the body, external conditions  

in which the body is located, or the presence of various substances. Oxygen defi-

ciency is referred to as hypoxia [1, 2]. 

The first model associated with the study of oxygen in the living body was the 

so-called Krogh cylinder [3], which, despite adopting a number of simplifications 

[1], allowed to determine the value of oxygen partial pressure in the tissue sur-

rounding the capillary. This model became the basis for many later works, related 

to, among others, muscle work modelling [4, 5], the presence of cancerous tissue  
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in the body [6], various therapies [7, 8], the process of angiogenesis and others 

[9, 10]. 

An increase in tissue temperature may be due to a variety of factors, such as 

physical exertion, a medical condition, or an external heat impulse. It can affect  

the body's oxygen balance. While the first two factors often yield reversible effects 

after the body is restored to normothermia, the heat impulse can lead to irreversible 

tissue damage. 

Thermal damage to tissues is related to, among others, changes in the blood 

vessels. At a sufficiently high temperature, both larger blood vessels (arterioles, 

venules) and capillaries are permanently damaged. As already mentioned, the latter 

are responsible for the supply of oxygen to the tissues. This means that the oxygen 

level in the tissues changes together with the increase in temperature [11, 12].  

In the current work, an analysis of changes in tissue oxygen distribution during 

thermal damage was performed. A model based on the Krogh cylinder concept was 

considered. Calculations were made for variable parameters of the oxyhemoglobin 

dissociation curve and the blood velocity in capillaries resulting from the degree of 

tissue damage. In addition, as determining the degree of thermal damage to the  

tissue requires knowledge of the temperature field in the tissue, it was determined 

on a separate model based on the Pennes equation. At the stage of numerical  

implementation, the finite difference method was used. 

2. The influence of temperature on oxygen transport in tissue 

The relationship between saturation SHb, i.e. the content of oxygen in the blood 

(more precisely in oxyhemoglobin), and partial pressure P is described by the sig-

moidal oxyhemoglobin dissociation curve (Fig. 1). It is determined under labora-

tory conditions, most often for specific temperature values, as well as values of 

carbon dioxide, pH, 2,3-DPG (2,3-diphosphoglycerate) and other substances.  

The parameter that characterizes the dissociation curve is the P50 pressure corre-

sponding to 50% hemoglobin saturation. An increase in temperature causes the P50 

value to shift to the right, which is called the right shift effect or Bohr effect 

[1, 11, 12]. 

The dissociation curve is described by various models, among which the Hill 

model is the most popular [2, 4] 
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( )
n
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P P

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where Pb [mmHg] is partial pressure of blood and n denotes the Hill coefficient 

which is related to the slope of dissociation curve. For the normothermia usually 

P50 = 26 mmHg and n = 2.7 are assumed [1, 2, 5]. Exemplary data of these 

parameters depending on temperature are presented in the Table 1. 
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Fig. 1. Oxyhemoglobin dissociation curve 

Table 1. Temperature-dependent parameters of Hill model for normal 2,3-DPG level [12] 

T [°C] 23 30 37 44 

P50 [mmHg] 12.3 17.3 27.0 35.9 

n 2.39 2.35 2.57 2.45 

 

The impact of increased temperature on tissue may be associated with its  

damage, which in turn affects the change of tissue perfusion. This can be expressed 

through a function [13, 14] 
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where w(Arr) and w0 denote damage-dependent and initial perfusion coefficients 

[s
–1

] respectively, while Arr is the tissue damage degree estimated on the basis of 

Arrhenius injury integral [15-17] 
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where R [J mol
–1 

K
–1

] is the universal gas constant, E [J mol
–1

] is the activation  

energy, A [s
–1

] is the preexponential factor and T is the temperature. 

In function (2), interval [0, 0.1] means the phase in which, blood vessels expand 

under the influence of heat, while interval (0.1, 1] is associated with progressive 

damage to blood vessels, meaning a decrease in blood flow. The value of Arr = 1  

is one of the accepted thresholds above which the tissue is permanently damaged. 

Changing in tissue perfusion affects parameters associated with the oxygen  

distribution model, e.g. blood flow rate [cm
3
 s

–1
] and blood velocity [cm s

–1
] [4]. 
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3. Governing equations  

The oxygen distribution model under consideration, based on the Krogh cylinder 

concept is presented in Figure 2 (Rc – capillary radius, Rt – tissue cylinder radius,  

L – length of cylinder, ub – blood velocity in capillary, r and z – radial and axial 

coordinates). 
 

 

Fig. 2. Domain considered 

The distribution of the partial pressure in the tissue subdomain Pt is described 

by the equation [3-5] 
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where Kt [(cm
2
 s

–1
)(cm

3
O2 cm

–3
 mmHg

–1
)] is the Krogh diffusion coefficient. Mt (Pt) 

on the RHS of (4) is oxygen consumption in tissue which in current work is as-

sumed as Michaelis-Menten kinetics model in form [1] 
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where M0 [cm
3
O2 cm

–3
 s

–1
] is oxygen demand while P0 [mmHg] is the partial pres-

sure which correspond to half-maximal oxygen consumption. 

Equation (4) is supplemented by boundary conditions in form [1, 2, 4] 

 

 ( )
: 2 ( )

( )
: 0

t
c c t b t

t
t

dP r
r R R K k P P r

dr

dP r
r R

dr

   

 
 (6) 

where k [(cm
2
 s

–1
)(cm

3
O2 cm

–3
 mmHg

–1
)] is mass transfer coefficient, Pb [mmHg]  

is the partial pressure in blood 
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In axial direction it is assumed that [4] 
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where Qb [cm
3
 s

–1
] denotes blood flow rate in capillary, b [cm

3
O2 cm

–3
blood] is the 

oxygen carrying capacity of blood at 100% saturation. 

Equation (7) is supplemented by initial condition 

 0 : b b inletz P P   (8) 

After determination of hemoglobin saturation SHb on the basis of (7), the partial 

pressure in capillary Pb is estimated as the inversion of equation (1) 

 

1

50
1

n
Hb

b

Hb

S
P P

S

 
  

 
 (9) 

It was already mentioned that, blood flow rate in capillary Qb is associated with 

perfusion coefficient. Here is assumed that [4, 5] 
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so, the blood velocity in capillary is (c.f. equation (2)) 

 
2

2
( ) t

b t

c

R
u w Arr L

R
  (11) 

In additional 1D task associated with temperature distribution and damage- 

-dependent perfusion coefficient w(Arr) estimation, the Pennes equation with  

adequate boundary-initial conditions were used, in form [15, 18, 19] 
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where  [Wm
1 

K
1

] is the thermal conductivity, c and cB [Jm
3 

K
1

] are the volu-

metric specific heat of tissue and blood, respectively, TB is the arterial blood  

temperature, Qmet [Wm
3

] is the metabolic heat source, q0 [Wm
2

] is the boundary 

heat flux,  [Wm
2 

K
1

] is the convective heat transfer coefficient, Tamb is the tem-

perature of surroundings, texp [s] is the exposure time while Tinit denotes the initial 

distribution of temperature. 
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4. Method of solution  

At the stage of numerical realization the finite difference method has been  

applied with grid based on three-point stencils [15, 19, 20].  

It was assumed that (c.f. equation (4)) 
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where hr is the grid spacing in radial direction. 

Substituting above formula into (4) and after appropriate mathematical manipu-

lation one obtains 
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where nr is the number of nods in radial direction while 
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Because the problem under consideration is non-linear, so additionally the 

Jacobian matrix have to be determined: 
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After determination of partial pressure in tissue Pt in the radial direction for 

a given node m, saturation SHb is calculated in the next node m + 1 on the basis 

(c.f. equation (7)) 

  , 1 , , , , 0,1,...,z
Hb m b m t m Hb m

b b

kh
S P P S m nz

Q        (17) 

where nz is the number of nodes in axial direction. Next the partial pressure in  

capillary Pb in the node m + 1 is also determined by the using of equation (9). 

5. Results of computations  

In task related to determination of the temperature, Arrhenius injury integral  

and perfusion coefficient (equations (2), (3), (12)) the following data was used: 

 = 0.75 Wm
–1 

K
–1

, c = 3 MJm
–3 

K
–1

, cB = 3.9962 MJm
–3 

K
–1

, TB = 37°C, Qmet = 

= 250 Wm
–3

, q0 = 15 kWm
–2

,  = 10 Wm
–2 

K
–1

, Tamb = 20°C, Tinit = 37°C, texp = 20 s, 

A = 3.1e+98 s
–1

, E = 6.27e+5 J mol
–1

, R = 8.314 J mol
–1

 K
–1

, t = 0.05 s [14, 15]. 

The value of initial perfusion coefficient was assumed on the basis of estimation of 

capillary density in muscle as w0 = 0.041 s
–1

 [4, 5]. 

For oxygen distribution model the data assumed were: Rc = 2.5 µm, Rt = 25 µm, L =  

= 500 µm, Kt = 9.4e–10 (cm
2
 s

–1
)(cm

3
O2 cm

–3
 mmHg

–1
), M0 = 0.00667 cm

3
O2 cm

–3
 s

–1
, 

k = 6.25e–9 (cm
2
 s

–1
)(cm

3
O2 cm

–3
 mmHg

–1
), P0 = 1 mmHg, Pb inlet = 100 mmHg,  

b = 0.2 cm
3

O2 cm
–3

blood , ub = 0.205 cm s
–1

 [4]. Based on the data contained in the 

Table 1, the following functions for describing the parameters of oxyhemoglobin 

dissociation curve P50 and n were assumed: 
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and 
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n T T T

T
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 (19) 

In the first step, the task related to determining the temperature distribution,  

tissue damage and damage-dependent perfusion coefficient was solved. Then  

the values determined in this task for the selected node were used to solve tasks  

related to oxygen distribution. 

Figure 3 presents the history of changes of the Arrhenius temperature integral 

and perfusion coefficient for a node with x = 0.0016 m coordinate. In this node,  

the perfusion coefficient increases to the value of w = 0.06564 s
–1

, after which  
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the perfusion drops and finally stabilizes at the value of w  0.0036 s
–1

. It should be 

added that for the node concerned the maximum temperature value was reached for 

the time t = 21.35 s and reached T = 57.21°C. Whereas for t = 60 s the temperature 

value was T = 40.56°C and values above 44°C occurred for t = 6.9 – 45.25 s. 

 

 
Fig. 3. History of Arrhenius integral and perfusion coefficient at node x = 0.0016 m 

On the basis of perfusion coefficient history and equation (11) the blood velocity 

in capillary ub was calculated for selected time steps: 0, 10,…, 60 s. Additionally, 

ub was determined for time t = 18.05 s, as for the time step when the perfusion  

coefficient is maximal (wmax). The calculated values were used in the oxygen  

distribution model. The following variants of simulation was conducted: 

– variant 1: constant ub , variable P50 and n, 

– variant 2: variable ub , constant P50 and n, 

– variant 3: variable ub , variable P50 and n. 

Assumption of the constant parameter values means that their values for t = 0 

are used (i.e. associated with Tinit = 37°C, w = w0 = 0.041 s
–1

), while the variable 

parameters values are related to ub estimated on the basis of (11) and/or P50 and 

n estimated on the basis of equations (18) and (19). The variant with constant 

ub and constant Hill curve parameters wasn't considered because it corresponds  

to the simulations for t = 0, for each of the considered calculation variants. 

Figures 4-6 present calculation results related to oxygen distribution. In all fig-

ures related to distribution on radial direction, one curve is visible for z = 0, which 

was identical in each simulation (identical Pb inlet value assumed in each simulation) 

and curves for z = L/2. The pressure drop on the capillary wall is visible in all  

radial direction curves, while the axial direction curves show the capillary pressure, 

i.e. Pb. For variant 2 and 3, the results indicate the occurrence of hypoxia.  

For variant 1 (Fig. 4), due to the functions (18) and (19), the curves for 10-40 s 

and wmax coincide. It can be stated that in this case the effect of temperature  

increase causes an increase in pressure in both tissue and capillary. There was  

no hypoxia in this calculation variant. 
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In variant 2 (Fig. 5) for radial direction, the curves for 0 and 10 s are very close 

to each other, which results from a similar perfusion coefficient (c.f. Fig. 3), while 

Pt and Pb for 40, 50 and 60 s for L/2 is equal to 0. In the figure for axial direction  

it can be seen that hypoxia occurred for these times from z = 335 μm. 

 

 

Fig. 4. Distribution of partial pressure in radial and axial directions in variant 1  

(constant ub, variable P50 and n) 

 

Fig. 5. Distribution of partial pressure in radial and axial directions in variant 2  

(variable ub, constant P50 i n) 

For variant 3 (Fig. 6), with variable ub and Hill curve parameters, the highest 

Pb = 69.13 mmHg for L/2 from all simulations was achieved. Just as in variant 2, 

hypoxia occurred for t > 30 s, therefore P(L/2) = 0 for these times. Hypoxia  

has been reported for z  200 μm, i.e. it is larger than in variant 2. In addition,  

the influence of variable P50 and n is visible here (Table 2). For the times of 30  

and 40 s it can be seen that hypoxia occurs on the increasing length of the capillary, 
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after which for the times of 50 and 60 s it begins to regress, which results from  

the temperature drop below 44°C (equations (18) and (19)). 

Table 3 presents a comparison of the hypoxia phenomenon for variants 2 and 3. 

The volume of hypoxia was calculated for the subdomain of tissue; it was also  

assumed that the tissue is hypoxic if P < 1 mmHg. 

 

 
Fig. 6. Distribution of partial pressure in radial and axial directions in variant 3  

(variable ub, P50 and n) 

Table 2. Depth of hypoxia for variant 3 (variable ub, P50 and n) 

t [s] T [°C] Arr w × 100 [s–1] depth of hypoxia [µm] 

30 51.19 0.90546 0.3876 210 

40 45.91 0.91200 0.3608 195 

50 42.65 0.91221 0.3599 200 

60 40.56 0.91224 0.3598 210 

Table 3. Comparison of hypoxia volume in tissue subdomain for variants 2 and 3 

 30 s 40 s 50 s 60 s 

variant 2 

[% of tissue volume] 
64.13 66.62 66.69 66.73 

variant 3 

[% of tissue volume] 
66.60 68.91 68.55 67.85 

6. Conclusions  

The considered simulation cases show that the occurrence of the hypoxia  

phenomenon was mainly influenced by the change in blood velocity resulting from 

the perfusion coefficient value. The latter was closely related to thermal tissue 



Numerical analysis of the temperature impact to the oxygen distribution in the biological tissue 27

damage through function (2). A drop in the perfusion value causes a simultaneous 

decrease in blood velocity. The effect of dependence of Hill curve parameters on 

temperature causes an increase in pressure with increasing temperature. In situations 

such as those in variant 3, it can counteract the occurrence of hypoxia.  

Many of the parameters used in the simulations were assumed as constant  

values, e.g. Pb inlet. Thermal damage can cause changes at different levels of the 

vascular network, so it seems that this value should also be accepted as related to 

tissue damage. It is also worth noting that part of the function (2) is defined in con-

nection with dilatation of the blood vessels (0.1 < Arr  1), which in the model  

related to temperature distribution and determining the degree of tissue damage 

means an increase in perfusion, while in the oxygen distribution model it could 

mean a change in diameter of the capillary Rc. 

The current work adopts the dissociation curve model as proposed by Hill. 

However, it is assumed that this model is accurate mainly in the range of 20-80% 

saturation. Because, as the results in the current work show, tissue damage is asso-

ciated with a drop in saturation often to a level below 20% of oxygen content  

in hemoglobin, it seems necessary to use a model that more accurately describes 

the dissociation curve in this range, e.g. the Adair model [21].  

The considered tissue damage process was strictly caused by a thermal impulse. 

In cases such as photodynamic therapy, we often deal with a mixed photothermal 

and photochemical mechanism of tissue damage, or even a mechanism limited to 

photochemical phenomena. Therefore, it can be concluded that in order to replicate 

the type of processes as accurately as possible, the oxygen distribution model 

should be supplemented with equations related to chemical reactions in the tissue. 
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