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Abstract. In this paper, the Ritz method is developed for the analysis of thin rectangular 

orthotropic plates undergoing large deflection. The trial functions approximating the plate 

lateral and in-plane displacements are represented by simple polynomials. The nonlinear 

algebraic equations resulting from the application of the concept of minimum potential  

energy of the orthotropic plate are cast in a matrix form. The developed matrix form equa-

tions are then implemented in a Mathematica code that allows for the automation of the  

solution for an arbitrary number of the trial polynomials. The developed code is tested 

through several numerical examples involving rectangular plates with different aspect ratios 

and boundary conditions. The results of all examples demonstrate the efficiency and accu-

racy of the proposed method. 
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1. Introduction 

The application of orthotropic plates has a remarkable contribution in the  

construction industry such as corrugated plates and laminated composite plates.  

In many applications, especially if some of the plate edges are free, plates are likely 

to undergo large deflection. Analytical solutions for the large deflection of 

orthotropic plates are available for only very few cases involving simply supported 

and clamped boundary conditions [3-11]. Energy methods offer a more powerful 

tool for obtaining approximate but fairly accurate analytical solutions to plates with 

mixed boundary conditions. The Ritz method, in particular, has the advantage of 

being flexible due to its ability to accommodate trial functions satisfying only  

the geometric boundary conditions. The application of energy methods to plate 

analysis can be found in standard textbooks on plates, such as [1, 2, 12].  
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Numerical methods such as the finite difference method [13-16], the finite ele-

ment method (FEM) [17], the finite strip method [18], the dynamic relaxation 

method [19], the radial point interpolation method [20] and  the method of differen-

tial quadrature [21, 22] are also possible candidate methods for the current prob-

lem. However, all of these numerical methods yield discrete solutions as compared 

to energy methods which derive the solutions in a functional form. Having the  

solution in a functional form is of a great advantage, especially for design and  

optimization purposes.  

In this paper, the Ritz method is used to cast the nonlinear equations resulting 

from the application of the concept of minimum potential energy of the orthotropic 

plate in a matrix form. The developed matrix form equations are then implemented 

in a Mathematica code that allows for the automation of the solution for an arbi-

trary number of trial functions. The developed code is tested through several  

numerical examples and the accuracy of the obtained solution is verified by com-

parison with available solutions in the literature and the FEM solutions. 

2. Ritz method formulation for large deflection of orthotropic plates 

The Ritz method is essentially based on minimizing the potential energy in a de-

formed body [23]. The potential energy of a plate subjected to a load � is defined 

as the difference between the strain energy stored in the plate during bending and 

the work done by the applied load. In the following, the strain and potential ener-

gies corresponding to large deflection of the orthotropic plate are derived first. 

Then, the equations resulting from the minimization of the potential energy are cast 

in a matrix form in order to automate the method and make it easily coded for  

an arbitrary number of Ritz trial functions. 

2.1. Strain and potential energy 

Consider a thin elastic orthotropic plate subjected to a lateral load ���, �� caus-

ing displacements �, 	, and 
 in the x, y and z directions, respectively. The strain 

energy stored in the plate during bending with consideration of the large deflection 

strains has mainly two components; the membrane strain energy and the bending 

strain energy. The membrane strain energy of the plate is defined by 

�� = 12 � ���  ��� + ��  ��� + ��� ����� ���  (1) 

where {���, ���, ����} are the membrane strains of the middle surface of the plate 

which are given by   



Ritz method for large deflection of orthotropic thin plates with mixed boundary conditions 7

� ���������� =
⎩⎪⎨
⎪⎧ �,� + 12 �
,� �%

	,� + 12 �
,� �%
�,� + 	,� + 
,� 
,�⎭⎪⎬

⎪⎫
 (2) 

 

and {�� , ��, ���} are the membrane forces which are related to strains by 
 

) �������* = +�,, �,% 0�,% �%% 00 0 �../ � ����������  (3) 

 

where 0�1 = 2 031�45 %⁄75 %⁄  is the extensional stiffness matrix and matrix Q is given by 
 

+3,, 3,% 03,% 3%% 00 0 3../ = 11 − 9��9�� : ;� 9��;� 09��;� ;� 00 0 <���1 − 9��9���= 

 

Substitution of Equation (2) along with Equation (3) in Equation (1) yields the mem- 

brane strain energy of orthotropic plate in terms of displacements derivatives, i.e.: 
 �� = 18 � ��,,�2�?� + 
?�% �% + �%%�2	?� + 
?�% �%� + 2�,%�2�?� + 
?�% ��2	?� + 
?�% �+ 4 �..��?� + 	?� + 
?�  
?��%� �� 

(4) 

 

The bending strain energy is defined by 
 �A = 12 � �B� C� + B� C� + B�� C������  (5) 

 

where {C�, C�, C��} are the components of the plate curvatures which are given by   
 

� C�C�C�� = �
,��
,��
,��  (6) 

 

and {B� , B�, B��} are the bending moments which are related to curvatures by 
 

) B�B�B��* = +D,, D,% 0D,% D%% 00 0 D../ � C�C�2C��  (7) 

 

where 0D1 = 2 031 4 �45 %⁄75 %⁄  is the bending stiffness matrix. 
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Substitution of Equation (6) along with Equation (7) in Equation (5) yields  

the bending strain energy of orthotropic plate in terms of displacements, i.e.: 

�A = 12 � �D,,
?��% + D%%
?��% + 2 D,% 
?��
?�� + 4D..
?��%  ����  (8) 

The work done by the external force can also be expressed  

W = � � 
 ���  (9) 

Finally, the potential energy is given by 

Π = �� + �A − G (10)

2.2. Ritz method in matrix form  

For convenience, the derivation of the equations will be performed using  

indicial notation. The first step in formulating the Ritz method is to approximate  

the solutions for �, 	, and 
 by the following  

���, �� = HIJKI��, ��, L =  1, �J 	��, �� = HMNOM��, ��,         P =  1, �N 
��, �� = HQRSQ��, ��,      T =  1, �R 

(11)

where the trial functions KI, OM and SQ are selected to satisfy only the geometric 

boundary conditions; �J, �N, and �R are the number of terms for each of the three 

trial functions; and the coefficients HIJ, HMN and HQR  are to be determined based on 

the principle of minimum potential energy, i.e.: 

U,VWX = �,VWX� + �,VWXA − G,VWX = 0,           Y =  1, �J U,VZ[ = �,VZ[� + �,VZ[A − G,VZ[ = 0,             \ =  1, �N U,V]̂ = �,V]̂� + �,V]̂A − G,V]̂ = 0,          _ =  1, �R 

(12)

Inspecting the dependency of the energy quantities, ��, �A and W, on the con-

stants HIJ, HMN and HQR and carrying out the lengthy task of all differentiations in the 

system of Equation (12) results in the following equations written in matrix form  

`a,,bI a,%bM 0a%,cI a%%cM 00 0 add5Qe :HIJHMNHQR
= = ` 00� � S5 ���

e + : �fg1b�HQR��fg2c�HQR��fg35�HIJ, HMN , HQR�= (13)
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where: 
 a,,bI = � ��,,KI,� Kb,�+ �.. KI,� Kb,� ����  

 

(14a)

 a,%bM = � ��,% OM,� Kb,�+ �.. OM,� Kb,� ����  

 

(14b)

 a%,cI = � ��,%  KI,� Oc,�+ �.. KI,� Oc,� ����  

 

(14c)

 a%%cM = � ��%% OM,� Oc,�+ �.. OM,� Oc,� ����  

 

(14d)

 add5Q = � �S5,�� �D,, SQ,��+ D,%SQ,�� � + S5,�� �D%% SQ,��+ D,% SQ ,�� �� + 4 D.. S5,�� SQ ,�� ���  
 

(14e)

 �fg1b = − 12 HQR  HiR � �Kb,� ��,, SQ,� Si ,�+ �,% SQ,�  Si ,� ��+ 2 �.. Kb,�  SQ,�  Si ,� ��� 
 

(14f)

 �fg2c = − 12 HQR  HiR � �Oc,� ��%% SQ,�  Si ,�+ �,% SQ,�  Si ,� �  �+ 2 �.. Oc,�  SQ,�  Si ,� ��� 
 

(14g)

 �fg35 = − 12 HQR HiRH�R � j�,, SQ ,�  Si ,�  S�,�  S5 ,�+ �%%SQ ,�  Si ,�  S� ,�  S5 ,� 
�+ ��,% + 2�..��SQ ,�  Si ,�  S�,�  S5 ,�+  SQ ,�  Si ,�  S�,�  S5 ,� �k ��

− HIJHQR � jKI ,� ��,, SQ ,� S5 ,�+ �,% SQ ,� S5 ,� � 
�+ �.. KI ,� � SQ ,� S5 ,�+  SQ ,� S5 ,� �k ��

− HMNHQR ��OM ,� ��%% SQ ,�  S5 ,�+ �,% SQ ,�  S5 ,� � 
�+ �.. OM ,� � SQ ,�  S5 ,�+  SQ ,�  S5 ,� ���� 

 

(14h)

where the indices take values according to the following: Y, L = 1, �J, \, P =  1, �N     

and T, l, m, _ =  1, �R . 
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The system of equations represented by Equation (13) contains a number of ��J + �N + �R� nonlinear equations in terms of the same number of unknown  

coefficients. The computations of all integrals and the solution of the resulting 

nonlinear equations have been carried out using Wolfram Mathematica [24].  

The solution of the system of equations has been performed using the built-in func-

tion „FindRoot” of Mathematica, which is substantially easier than the well-known 

iterative procedure. 

3. Numerical examples 

The accuracy and versatility of the proposed method is examined through three 

numerical examples representing three different set of boundary conditions: (a) all 

sides are simply supported and restrained against in-plane movement (SSSS),  

(b) two opposite sides are simply supported and restrained against in-plane move-

ment and the other two are free to move in all directions (SFSF) and (c) three sides 

are simply supported and restrained against in-plane movement and the fourth edge 

is free to move both laterally and in the in-plane directions (SSSF).  
 

 
Fig. 1. Rectangular orthotropic plates with sides of (2a × 2b) 

The geometry and boundary conditions for the above three cases are shown  

in Figure 1. To utilize symmetry, the origin of coordinates is placed at the center of 

(a)

(b) (c) 
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the plate for the first two examples. For the third example, the origin is moved to 

the center of the bottom edge. The dimensions of the plate are (2a  2b) and  

the analysis is carried out for three aspect ratios: o/p = 1 2⁄ , 2 3⁄ &1. To certify 

the adequacy of the proposed method, the first case (SSSS) has been solved for 

square orthotropic plate and compared with the obtained results by Reddy [17]. 

The results were obtained graphically similar to Reddy’s presentation for fair com-

parison. Then, the nondimensional graphical results of the deflection and stresses 

for different aspect ratios were obtained and verified against the FEM. For the other 

two cases involving free edges (SFSF, SSSF), there are no previously published  

solutions and therefore, their results are verified against FEM solutions only.  

The same plate properties assumed by Reddy [17] have been used here for all the 

examples. These are: a = 6 in, t = 0.138 in, ;� = 3 × 10. s\L, ;� = 1.28 × 10. s\L, <�� = 0.37 × 10. s\L and 9�� = 0.32. 

The FEM analysis was performed using ABAQUS software with an extremely 

fine mesh having a maximum element size of a/60. The element type is STRI3 

which considers geometrical nonlinearity based on classical plate theory [25].  

Example 1. Uniformly loaded SSSS rectangular orthotropic plates 

As per Ritz method requirements, the trial functions are required to satisfy  

the essential boundary conditions. Thus, the solution can be obtained by employing 

the following trial polynomials for this case of boundary conditions: 

� = u u HIMJ�p% − �%��o% − �%��%Iv,�%Mw
Ix�

�
Mx�  

	 = u u HIMN �p% − �%��o% − �%�  �%I�%Mv,w
Ix�

�
Mx�  


 = u u HIMR�p% − �%� �o% − �%�  �%I�%Mw
Ix�

�
Mx�  

The criterion for truncating the number of polynomial terms was based on con-

vergence to the fine mesh-FEM solution. The convergence study showed that the 

complete agreement with FEM solution can be obtained with (m = n = 3) results  

in 16, 16 and 16 unknown coefficients for �, 	, and w, respectively. This problem 

has been solved by Reddy [17] for a square plate (a = b = 6 in). The convergence 

analysis in Table 1 shows that the deflection converges rapidly with few terms while 

the normal and bending stresses required more term to get converge (m = n = 3). 

The comparisons of the present solution with those obtained by Reddy [17] and 

FEM are shown in Figures 2a & 2b for central deflection and maximum stresses, 

respectively. The Figures show perfect agreement among the three solutions.  
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Table 1. Convergence analysis results at center point for square SSSS plate, � = 2.6 

m, n 
/_ {m�  |�2o�%;�_%  {m�  |�2o�%;�_%  {o�  |�2o�%;�_%  {o�  |�2o�%;�_%  

1 0.0925 0.0300 0.0136 0.7471 0.3702 

2 1.6094 8.7776 4.1640 14.7027 6.7756 

3 1.6021 8.8005 4.2804 13.4794 5.5947 

4 1.6021 8.8082 4.2870 13.4536 5.5838 

5 1.6021 8.8085 4.2868 13.4414 5.5809 

 

 

Fig. 2. Uniformly loaded SSSS-orthotropic square plates: a) central deflections,  

b) membrane and exterme stress at (x = 0, y = 0) 

For the plate with aspect ratios } = 1 2⁄  & 2 3⁄ , no published solutions are 

available and, therefore, the present solution is compared with the FEM only.  

The normalized central plate deflection (w/t) and stress �|{��2o�% �;�_%�~ �, where | = �1 − 9��9���, are plotted versus the normalized load ���2o�� �;�_��~ � in 

Figures 3a and 3b for the deflection and stresses, respectively. The Figures confirm 

the perfect agreement between the present solutions and those obtained by the FEM. 

 

 

Fig. 3. Uniformly loaded SSSS-orthotropic plates: a) central deflections, b) membrane 

and exterme stress at (x = 0, y = 0) 
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Example 2. Uniformly loaded SFSF rectangular orthotropic plate  

The plate is simply supported, prevented from in-plane movement at the edges �±p, �� and free to move at the edges ��, ±o�. The trial functions become:  � = ∑ ∑ HIMJ�p% − �%��%Iv,�%M%Ix�%Mx�   	 = ∑ ∑ HIMN �p% − �%��%I�%Mv,%Ix�%Mx�   
 = ∑ ∑ HIMR�p% − �%��%I�%M�Ix�dMx�   

The verification of the proposed method is performed against the FEM solution 

for different aspect ratios: } = o p⁄ = 1 2⁄ , 2 3⁄ , 1. Figures 4 and 5 show the re-

sults for deflection and stresses at the critical points of plate, namely: the center 

and the middle of the free edges. The results presented in all Figures show a perfect 

agreement between the two solutions.  

 

 

Fig. 4. Deflection for uniformly loaded SFSF-orthotropic plate: a) at center (0, 0),  
b) at mid-free edges (0, ± b) 

 

Fig. 5. Membrane and extreme-fiber stress for uniformly loaded SFSF- orthotropic plate: 

a) at center (0, 0), b) at free edges (0, ± b) 
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Example 3. Uniformly loaded SSSF rectangular orthotropic plate  

In this example, the rectangular plate is simply supported and prevented from 

in-plane movements while the fourth edge at (x, 2b) is free to move in all direc-

tions. The origin of this plate is at the middle of the bottom (simply supported) 

edge. The approximate expressions for �, 	 p�� 
 are given by:  � = ∑ ∑ HIMJ�p% − �%� �%Iv,�Mv,�Ix�%Mx�   	 = ∑ ∑ HIMN �p% − �%� �%I �Mv,�Ix�%Mx�   
 = ∑ ∑ HIMN �p% − �%��%I�Mv,.Ix�%Mx�   

Figure 6 shows the results for the lateral deflection evaluated at the center and  

at the middle of the free edge, while Figure 7 shows the corresponding membrane 

and extreme-fiber stresses. The excellent agreements between all curves for the two 

solutions confirm the accuracy of the proposed formulation for the Ritz method.  

 

 
Fig. 6. Deflection for uniformly loaded SSSF-orthotropic plate: a) at center (0, b),  

b) at free edges (0, 2b) 

 
Fig. 7. Membrane and extreme-fiber stress for uniformly loaded SSSF-orthotropic plate: 

a) at center (0, b), b) at free edges (0, 2b) 
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For the particular case of b/a = 1, a numerical comparison between the results of 

the present solutions and FEM solutions for the above three examples is given  

in Table 2 which gives the normalized central deflection and stress for different 

loading values. Again, the numerical comparison confirms the accuracy of the  

present method.  

Table 2. Normalized central deflection and stress versus normalized load for d b/a = 1 

� �2o��;�_�  Expression 
SSSS SFSF SSSF 

FEM Ritz FEM Ritz FEM Ritz 

100 

w/t 

1.0949 1.0947 1.1824 1.1823 1.1709 1.17132 

200 1.4231 1.4227 1.5291 1.5289 1.5193 1.52025 

300 1.6433 1.6434 1.7672 1.7670 1.7552 1.75627 

100 {�  |�2o�%;�_%  

19.7120 19.7135 20.5499 20.5535 20.9871 21.0876 

200 27.9968 27.9982 29.4061 29.3962 29.9903 30.1909 

300 34.3009 34.3228 36.3072 36.2757 36.8951 37.1475 

4. Conclusions 

The Ritz method is presented for the solution of large deflection of thin rectan-

gular orthotropic plates governed by von Karman equations. The nonlinear equa-

tions resulting from the application of the concept of minimum potential energy of 

the orthotropic plate are first cast in a matrix form which facilitates the implemen-

tation of Ritz method in a simple Mathematica code capable of accommodating  

as many polynomial terms as required to achieve convergence of the solution.  

The derived matrix form is capable of handling different boundary conditions  

including free edges and different degrees of orthotropy. The results of the numeri-

cal examples confirm the advantage of automating the Ritz method in terms of its 

accuracy and capability in handling the present complicated problem. 
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