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Abstract. Heat transfer and fluid flow in the rectangular channel with an obstacle are con-

sidered. The problem is described by the Fourier-Kirchhoff equation, Navier-Stokes equa-

tions and continuity equation supplemented by appropriate boundary and initial conditions. 

To solve this system of equations the finite difference method with a staggered grid is used.  

The results of computations obtained using authorial computer program are compared  

with ANSYS Fluent simulation. Computations are carried out for obstacles of various sizes 

and positions, and on this basis the conclusions are formulated. 

 
MSC 2010: 76M20, 74F05 

Keywords: channel with an obstacle, Fourier-Kirchhoff's equation, Navier-Stokes equations, 

finite difference method 

1. Introduction  

In the paper, the two-dimensional, transient, laminar fluid flow in the channel 

with an obstacle is analyzed. The temperature of the channel walls is equal to Tw 

and is the same as the obstacle temperature. The fluid temperature at the channel 

inlet is equal to Tin < Tw , while the fluid velocity at the channel inlet is equal to vin . 

Fluid flow is described by the Navier-Stokes equations and continuity equation, the 

heat transfer is described by the Fourier-Kirchhoff equation. These equations are 

supplemented by appropriate boundary and initial conditions.  

This system of coupled equations is solved using the finite difference method with 

a staggered grid. The comparison between the results obtained using an authorial 

computer program and the ANSYS Fluent simulation are performed. Computations 

are carried out for obstacles of various sizes and positions.  

The goal is to determine what effect the size and location of the obstacle have 

on temperature and velocity distributions. 
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2. Formulation of the problem  

Two-dimensional, transient, laminar fluid flow in the channel with an obstacle  

located on the lower wall is considered, as shown in Figure 1. The channel consists 

of two parallel plates of length ly, and the distance between them is equal to lx.  

The obstacle height is H and the width is W. The distance of the obstacle from  

the inlet of the channel is equal to l.  
 

 
Fig. 1. Computational domain 

The mathematical model of the analyzed process consists of the following equa-

tions, e.g. [1] 

– x momentum equation 

 
   2 2 2

2 2

1
=

ρ

u uvu p u u

t x y x x y


      
           

 (1) 

– y momentum equation 

 
   2 2 2

2 2

1
=

ρ

vuvv p v v

t x y y x y


     
           

 (2) 

– continuity equation 

 0
u v

x y

 
 

 
 (3) 

– Fourier-Kirchhoff equation 

 
    2 2

2 2
+

uT vTT T T
a

t x y x y

     
        

 (4) 

where u, v are the velocity components in the x and y direction, p is the pressure,  

ρ is the density, ν is the kinematic viscosity, a = λ/(cρ) (λ is the thermal conductivity, 

c is the specific heat), T is the temperature and t denotes the time. 



Modeling of heat transfer and fluid flow in a rectangular channel with an obstacle 123

It should be noted that the equations (1) and (2) are slightly differently written 

than standard ones, but it is easy to check that 

 

   2

2
u uv u u v

u v u
x y x y y

u v u u u u
u u v u v

x y x y x y

    
    

    

      
           

 (5) 

and 

 

   2

2
vuv u v v

v u v
x y x x y

u v v v v v
v u v u v

x y x y x y

   
    

    

      
           

 (6) 

In the above formulas, the continuity condition (3) is taken into account. In a simi-

lar way one obtains (c.f. equation (4))  

 

   
+

uT vT u T v T
T u T v

x y x x y y

u v T T T T
T u v u v

x y x y x y

     
    

     

      
           

 (7) 

It should be emphasized that the constant temperature Tw in the obstacle sub-

domain is assumed here. 

The system of equations (1)-(4) should be supplemented by appropriate bound- 

ary and initial conditions. The fluid velocity and the temperature at the channel inlet 

are assumed uniform, namely v = vin and T = Tin , while ∂u/∂n = 0 (∂(∙)/∂n denotes 

the normal derivative). At the walls x = 0, x = lx the boundary conditions u = 0  

and ∂v/∂n = 0 are accepted. At the channel outlet ∂u/∂n = 0, v = vin , ∂T/∂n = 0.  

The temperature of the walls x = 0, x = lx is equal to Tw and is the same as the  

obstacle temperature. The initial conditions are also known: u = v = 0 and T = Tin . 

3. Method of solution  

To solve the problem formulated, the finite difference method is used. At first, 

the staggered grid [1-5], as shown in Figure 2, is introduced.  

Let us denote , ( , , ),
f

i ju u ih jk f t   where h is the grid step in x direction, k is 

the grid step in y direction, Δt is the time step, i = 0, 2, 4, ..., m,  j = 1, 3, ..., n – 1,  

f = 0, 1, 2, ..., F, and , ( , , ),f
i jv v ih jk f t   where i = 1, 3, ..., m – 1, j = 0, 2, ..., n. 
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Fig. 2. Staggered grid:  - pressure, temperature,  - velocity component u, 

 - velocity component v 

The finite difference approximation of equations (1) and (2) using an explicit 

scheme can be written in the form (i = 2, 4, ..., m – 2, j = 1, 3, ..., n – 1) 

 

     

   

2 21
, 2, 2, , 2 , 2 2, 2,

, 1 , 1 2, , 2, , 2 , , 2
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2 2

2 4 4

f f
f f f f f

i j i j i j i j i j i j i j

f f f f f f f f
i j i j i j i j i j i j i j i j

u uu u u u u

t h

uv uv u u u u u u

k h k



     

     

   
  



     
   

 

 (8) 

and (i = 1, 3, ..., m – 1, j = 2, 4, ..., n – 2) 

 

     

   
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2 2

, 2 , 2 2, , 2, , 2 , , 2

2 2
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4 4 4

f ff f f f f
i j i j i j i j i j i j i j

f f
f f f f f f

i j i j i j i j i j i j i j i j

uv uvv v v v v

t h

v v v v v v v v

k h k



     

     

   
  



     
   

 

 (9) 

A dash above u and v indicates that the components related to the pressure are 

omitted (c.f. equations (1), (2)) [5]. 

The stability conditions for equations (8) and (9) have the form [5] 

 
2 2

1 0, 1
2 22 2

u t v tt t

h kh k

    
      (10) 

To take into account the boundary conditions, the fictitious nodes outside the 

domain are introduced and then 

 0, , , 1 ,1 , 1 , 10, 0, 1,3,..., 1, , , 0,2,...,f f f f f f
j m j i i i n i nu u j n u u u u i m          (11) 
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 ,0 , 1, 1, 1, 1,, , 1,3,..., 1, , , 0,2,...,
f f f f f f

i in i n in j j m j m jv v v v i m v v v v j n          (12) 

Average values of u and v are defined, namely   

  

 

, 2, , 2,

1, 1,

, , 2 1, 1 1, 1

, 1

, , 2 1, 1 1, 1

, 1

,
2 2

2 2

2 2

f f f f
i j i j i j i jf f

i j i j

f f f f
f i j i j i j i j

i j

f f f f
f i j i j i j i j

i j

u u u u
u u

u u v v
uv

u u v v
uv

 
 

    


    


 
 

   
     
  

   
     
  

 (13) 

  
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, 1 , 1

1, 1 1, 1 , 2,

1,

1, 1 1, 1 , 2,

1,

,
2 2

2 2

2 2

f f f f
i j i j i j i jf f

i j i j

f f f f
f i j i j i j i j

i j

f f f f
f i j i j i j i j

i j

v v v v
v v

u u v v
uv

u u v v
uv

 
 

    


    


 
 

   
     
  

   
     
  

 (14) 

Introducing (13) into (8) and (14) into (9) one obtains 

  1
, 2, 2, , 2 , 2 ,

1

4

f f f f f f
i j i j i j i j i j i ju u u u u A t

          (15) 

 

   

     
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,
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2, , 2, , 2 , , 2

2 2

4

8

2 2

4 4

f f
i j i jf

i j

f f f f f f f f
i j i j i j i j i j i j i j i j

f f f f f f
i j i j i j i j i j i j

u u
A

h

u u v v u u v v

k

u u u u u u

h k


 

         

   


  

    


    
  

 

 (16) 

and 

  1
, 2, 2, , 2 , 2 ,

1

4

f f f f f f
i j i j i j i j i j i jv v v v v B t

          (17) 
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     

   

1, 1 1, 1 , 2, 1, 1 1, 1 , 2,

,

2 2

, 2 , 2 2, , 2, , 2 , , 2

2 2

8

2 2

4 4 4

f f f f f f f f
i j i j i j i j i j i j i j i jf

i j

f f f f f f f f
i j i j i j i j i j i j i j i j

u u v v u u v v
B

h

v v v v v v v v

k h k


         

     

    
  

     
   

 

 (18) 

For the nodes (i+1, j) and (i–1, j) the following approximation of equation (1) is 

proposed 

 

1 1 1 1 1 1 1 1
1, 1, 2, , 1, 1, , 2,

,
2 ρ 2 ρ

f f f f f f f f
i j i j i j i j i j i j i j i ju u p p u u p p

t h t h

       
        

   
 

 (19) 

while for the nodes (i, j+1) and (i, j–1) the approximation of equation (2) is as  

follows 

 

1 1 1 1 1 1 1 1
, 1 , 1 , 2 , , 1 , 1 , , 2

,
2 ρ 2 ρ

f f f f f f f f
i j i j i j i j i j i j i j i jv v p p v v p p

t k t k

       
        

   
 

 (20) 

The continuity condition (3) is also approximated (i = 1, 3, ..., m – 1, j = 1, 3, ...,  

n – 1) 

 

1 1 1 1
1, 1, , 1 , 1

0
2 2

f f f f
i j i j i j i ju u v v

h k

   
    

   (21) 

Taking into account the dependencies (19) and (20), the equation (21) has a form 

 

 

 

1 1 1 1
1, 1, , 1 , 1 1 1 1

2, , 2,2

1 1 1
, 2 , , 22

2
2 2 4ρ

2 0
4ρ

f f f f
i j i j i j i j f f f

i j i j i j

f f f
i j i j i j

u u v v t
p p p

h k h

t
p p p

k

   
      

 

  
 

  
    


  

 (22) 

Newton’s method for solving the system of algebraic equations (22) is used here. 

Let [5] 

 

   

 

1 1 1 1
1, 1, , 1 , 11 1 1 1

, 2, , 2,2

1 1 1
, 2 , , 22

2
2 2 4ρ

2
4ρ

f f f f
i j i j i j i js s s s

i j i j i j i j

s s s
i j i j i j

u u v v t
D p p p p

h k h

t
p p p

k

   
      

 

  
 

  
     


 

 (23) 

and then 
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 

 
1

,1
, , 1 1

, ,/

s
i js s

i j i j s s
i j i j

D p
p p

D p p




 
 

 
 (24) 

where s is the number of iteration and 

 
 1

,

1 2 2
, 2ρ 2ρ

s
i j

s
i j

D p t t

p h k





  
 


 (25) 

Thus, for s = 1 in the nodes the arbitrary values of the pressure are assumed 

(e.g. zero). In the next iterations, the values of pressure are calculated using the 

formula 

 
   

2 2
1 1

, , ,2 2

2ρ
, 1, 2, ...,s s s

i j i j i j

h k
p p D p s S

t h k

   
 

 (26) 

Approximation of boundary conditions is as follows 

 

1 1 1 1
, 1 ,1 , 1 , 1

1 1 1 1
1, 1, 1, 1,

, , 1,3,..., 1

, , 1,3,..., 1

s s s s
i i i n i n

s s s s
j j m j m j

p p p p i m

p p p p j n

   
  

   
  

   

   
 (27) 

The calculations are repeated until 
1

,( )s
i jD p 

 is almost zero. The final pressure  

distribution corresponds to the moment t 
f+1

. 

Finally, the velocity components are calculated (i = 2, 4, ..., m – 2, j = 1, 3, ..., n – 1) 

- c.f. formula (19)   

  1 1 1 1
, , 1, 1,

2 ρ

f f f f
i j i j i j i j

t
u u p p

h

   
 


    (28) 

and (i = 1, 3, ..., m – 1, j = 2, 4, ..., n – 2) - c.f. formula (20) 

  1 1 1 1
, , , 1 , 1

2 ρ

f f f f
i j i j i j i j

t
v v p p

k

   
 


    (29)  

The following approximation of equation (4) is proposed (i = 1, 3, ..., m – 1,  

j = 1, 3, ..., n – 1) 

 

     

   
   

1
, 2, 2, , 2 , 2 1, 1,

, 1 , 1 2, , 2, , 2 , , 2

2 2

0.25
+

2

2 2

2 2 2

f ff f f f f
i j i j i j i j i j i j i j

f f f f f f f f
i j i j i j i j i j i j i j i j

uT uTT T T T T

t h

vT vT T T T T T T
a

k h k


     

     

   




     
  

 
 

 (30) 
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where [5] 

    1, , 1, 1, 2, 1,

1, 1,

1, 2, 1, 1, , 1,

, 0 , 0
,

, 0 , 0

f f f f f f
i j i j i j i j i j i jf f

i j i jf f f f f f
i j i j i j i j i j i j

u T u u T u
uT uT

u T u u T u

    

 
    

   
  

   
 (31) 

    , 1 , , 1 , 1 , 2 , 1

, 1 , 1

, 1 , 2 , 1 , 1 , , 1

, 0 , 0
,

, 0 , 0

f f f f f f
i j i j i j i j i j i jf f

i j i jf f f f f f
i j i j i j i j i j i j

v T v v T v
vT vT

v T v v T v

    

 
    

   
  

   
 (32) 

Finally 

 

 
   

   

1, 1,1
, 2, 2, , 2 , 2

, 1 , 1 2, , 2, , 2 , , 2

2 2

1

4 2

2 2

2 4 4

f f

i j i jf f f f f
i j i j i j i j i j

f f f f f f f f
i j i j i j i j i j i j i j i j

uT uT
T T T T T t

h

vT vT T T T T T T
t a t

k h k

 
   

     


      

     
     

 

 (33) 

The stability condition takes a form 

 
2 2

1 0
2 2

a t a t

h k

 
    (34) 

It should be noted that the velocities normal to the obstacle are set to zero and  

the tangential velocities are free slip boundary conditions [5] 
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4. Results of computations  

The rectangular channel of dimensions  lx = 0.1 m and ly = 0.4 m is considered. 

The dimensions of an obstacle are equal to H = 0.06 m and W = 0.06 m. The distance 

of the obstacle from the inlet of the channel is equal to l = 0.1 m. The following  

parameters of water are accepted: density ρ = 998.3 kg/m
3
, thermal conductivity  

λ = 0.6 W/(mK), specific heat c = 4190 J/(kgK), kinematic viscosity ν = 10
–6

 m
2
/s. 

The water velocity and the temperature at the channel inlet are equal to vin = 0.01 m/s 

and Tin = 20°C, respectively, the temperature of the walls is equal to Tw = 60°C [6] 
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and is the same as the obstacle temperature. The initial conditions u = v = 0 and  

T = Tin are also given.   

It is assumed that m = 20, n = 80, which means that grid step h = k = 0.005 m. 

Additionally, m1 = 9, n1 = 21, n2 = 31. The time step is equal to Δt = 0.01 s. 

In Figures 3 and 4, the streamlines obtained using the authorial computer pro-

gram and ANSYS software, respectively, after 6 s are shown. Figures 5 and 6 illus-

trate the temperature distribution after 6 s. It is visible that both of the streamlines 

as well as the temperature distributions are similar. Computations were also made for 

two other obstacle dimensions, namely H = 0.06 m and W = 0.1 m (wide obstacle) 

and H = 0.08 m and W = 0.02 m (high obstacle). The results are shown in Figures 

7-10. It is also decided to perform another analysis, where the obstacle is shifted, 

this means the new value of parameter l = 0.18 m is assumed. The dimensions of 

the obstacles are the same, as previously illustrated. The temperature distributions 

are shown in Figures 11-13.  
 

 
Fig. 3. Streamlines after 6 s - normal obstacle 

 
Fig. 4. Streamlines after 6 s (ANSYS) - normal obstacle 

 
Fig. 5. Temperature distribution after 6 s - normal obstacle 
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Fig. 6. Temperature distribution after 6 s (ANSYS) - normal obstacle 

 

Fig. 7. Streamlines after 6 s - wide obstacle 

 

Fig. 8. Temperature distribution after 6 s - wide obstacle 

 

Fig. 9. Streamlines after 6 s - high obstacle 
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Fig. 10. Temperature distribution after 6 s - high obstacle 

 
Fig. 11. Temperature distribution after 6 s - shifted obstacle 

 
Fig. 12. Temperature distribution after 6 s - shifted wide obstacle 

 
Fig. 13. Temperature distribution after 6 s - shifted high obstacle 
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The computations carried out show that after 6 seconds the steady-state tempe-

rature distribution is obtained. For all variants of obstacle dimensions and location, 

only before the obstacle the temperature changed from 20 to 58°C. In the remaining 

sub-domain, the temperature is 60°C and is equal to the obstacle temperature. 

5. Conclusions 

In this study, the coupled analysis of fluid flow and heat transfer in a rectangular 

channel with an obstacle has been presented. The different variants of obstacle di-

mensions and location have been taken into account. The problem has been solved 

using the finite difference method and authorial computer program. The results 

have been compared with the results obtained using the ANSYS Fluent software. 

For the assumed dimensions of a rectangular channel with an obstacle, after 6 

seconds the steady state has been achieved. Regardless of the size and location of 

the obstacle, after this time the temperature behind the obstacle reached a tempera-

ture equal to the temperature of the obstacle.  

The authorial computer program allows, among other, to analyze the fluid flow 

and heat transfer in rectangular channel with more obstacles. It should be noted  

that the constant temperature of obstacle has been assumed here, but in future  

the temperature distribution in the obstacle will also be determined.  
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