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Abstract. This work devoted to study the injective micropolar flow in a porous channel. 

The flow is driven by suction or injection on the channel walls, and the micropolar model is 

used to characterize the working fluid. The governing nonlinear partial differential equa-

tions are reduced to the nonlinear ordinary coupled differential equations by using Ber-

man’s similarity transformation. These equations are solved for large mass transfer  

via variation of parameters method (VPM) which has been used effectively in the solution 

of nonlinear equations recently. This method has not previously been applied to a problem 

of micropolar flow. The results of the variation of parameters method are found to be  

in excellent agreement with the results of the Matlab bvp4c solver (NUM). With this  

validity, the effects of the some important parameters on the velocity and rotation profile of 

micropolar flow are discussed in detail. It can be seen that increases in the values �� and �� 

have different results in comparison with �� increasing. 
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Nomenclature 

��, �� integration constants W Wronskian 

� dimensionless stream function �, 	 Cartesian coordinates 


 dimensionless microrotation Greek symbols 

ℎ width of channel [m] � dimensionless independent variable 

 micro-inertia density � dummy variable 

� linear operator � dynamic viscosity [kg/ms] 

� microrotation/angular velocity [1/s] � coupling coefficient [kg/ms] 

��,�,� dimensionless parameters � fluid density [kg/m
3
] 

� pressure � stream function [m
2
/s] 

� mass transfer parameter [m/s] Φ dependent variable 

�� Reynolds number � dummy variable 

�, � Cartesian velocity components [m/s] Subscripts 

�� microrotation viscosity [kg·m/s] � complementary solution 

��,�,�,� particular solution functions � particular solution 



O. Güngör, C. Arslantürk 18 

1. Introduction 

Eringen [1] firstly introduced the concept of the micropolar fluids. It is well 

known that in many of the real fluids the shear behaviour cannot be characterized 

by Newtonian relationships and therefore, researchers have proposed diverse  

non-Newtonian fluid theories to explain the divergence in the behaviour of real  

fluids with that of Newtonian fluids. One such theory is that of micropolar fluids. 

The theory accounts for the internal characteristics of the substructure particles 

with the assumption that they are allowed to undergo rotation independent of their 

linear velocity. It is noticed that the theory of micropolar fluids is supposed to suc-

cessfully characterize non-Newtonian behaviour of certain fluids, such as liquid 

crystals, liquid with polymer additives, ferro-liquids, colloidal fluids, animal blood 

particles, suspensions, slurries, geomorphological sediments, haematological  

suspensions, etc. The research area of micropolar fluids has been of great interest, 

mainly because the Navier-Stokes equations for Newtonian fluids cannot success-

fully describe the characteristics of fluid with nanoparticles [2, 3]. The equations of 

motion characterizing a micropolar fluid flow are non-linear in nature (as in the 

case of Newtonian viscous fluids) and are constituted by a coupled system of  

vector differential equations in velocity and rotation. The mathematical background 

of the micropolar fluid flow theory is presented by Lukaszewicz [4]. 

Most of the fluid mechanics and heat transfer problems can be transformed to 

an ordinary differential equation using similarity transformation, and the micropo-

lar flow is one of them. The nonlinear differential equations arising from the pre-

sented study have been solved via a similarity transformation proposed by Berman 

[5], who determined an exact solution of the Navier-Stokes equations by reducing 

the governing partial differential equations to a nonlinear ordinary differential 

equation of fourth order. In the following years, the study of Berman’s exact solu-

tion has attracted the attention of various researchers subsequently, i.e. Yuan [6], 

Robinson [7] and Zaturska et al. [8]. 

The present study investigates the analysis of the flow of a micropolar fluid  

in a porous channel, where the flow is driven by uniform mass transfer through  

the channel walls. The nonlinear equations in this study have been solved using  

a variation of the parameters method. In recent years, some researchers used  

several analytical/numerical methods to solve these kinds of the problems using  

the Optimal homotopy asymptotic method (OHAM) by Joneidi et al. [9], using  

the Homotopy analysis method (HAM) by Hassan and Rashidi [10], using the 

Homotopy analysis method (HAM) by Abdulaziz et al. [11], using the Homotopy 

analysis method (HAM) by Ziabakhsh and Domairry [12], using the Adomian  

decomposition method (ADM) by Aski et al. [13], using the Differential transform 

method by Mosayebidorcheh [14], using the Homotopy analysis method (HAM)  

by Si et al. [15], Homotopy perturbation method (HPM) by Sheikholeslami et al. 

[16], using the Lie group method by Cao et al. [17]. 
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It is obvious from literature review [9-17] that various analytical and numerical 

approaches have been utilized so far in the analysis of micropolar flow in a perme-

able channel with different mathematical models. However, no research to date  

has been aimed at using the variation of parameters method to assess the analysis 

of micropolar flow in a porous channel with high mass transfer. In addition,  

the method of variation of parameters to evaluate in engineering problems that aris-

ing from the modeling of micropolar fluid has not been simulated previously.  

The variation of parameters method (VPM) has been principally applied to 

solve nonhomogeneous, linear differential equations [18]. It is obvious that this 

method can also be used to solve nonlinear differential equations [19, 20]. These 

studies have addressed general mathematical aspects of the obtained solutions. 

However, it is unequivocal from literature [21] that the method of variation of  

parameters has been used to solve nonlinear differential equations that arising  

in various direct and inverse heat transfer applications. Moreover, this method is  

a technique that is simple and relatively easy to implement for solving the non- 

linear equations of complicated problems such as absorbing, and emitting non-gray 

planar media [22]. Arslantürk [23-25] applied this method for the thermal analysis 

of solid fins with different profiles and the analysis of the optimal dimensions of  

a space radiator. Güngör and Arslantürk [26] studied the three-dimensional problem 

of condensation film on an obliqued rotating disk under the steady-state condition 

using the variation of parameters method. Moreover, this method enables the  

determination of unknown variable parameters that arise from nonlinear equations 

where no closed form solutions are available.Therefore, it is expected that this 

method can be used in the solution of boundary layer equations [27] that must be 

solved iteratively by fulfilling a suitable boundary condition that can transform  

an interval problem into a finite interval problem. 

The main objective of the present study is to evaluate the flow analysis of  

micropolar fluid through a porous channel using the variation of parameters 

method. With a view to evaluating the accuracy of this approach, the problem  

is also solved numerically using the Matlab bvp4c solver. It is observed that  

there is an excellent agreement between the results of compared methods. 

2. Mathematical formulation 

Let us consider the steady, incompressible, laminar micropolar fluid in a channel 

with porous walls (Fig. 1). The channel walls are parallel to the �-axis and located 

at 	 = ±ℎ, where 2ℎ is the channel width. The distance 2ℎ between the porous 

walls is much smaller than the width and length of the channel. Both walls have 

equal permeability and the micropolar fluid is uniformly injected or removed  

at a constant velocity q. � and � are the velocity component in the � and 	 direc-

tions and � is microrotation, respectively. Under these assumptions, the governing 

equations are expressed as follows: 
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Fig. 1. Schematic diagram of the problem 

 � � +  � 	 = 0 (1) 

# $�  � � + �  � 	% = −  � � + '� + �( ) �� �� +  �� 	�* + �  � 	  (2) 

# $�  � � + �  � 	% = −  � 	 + '� + �( ) �� �� +  �� 	�* − �  � �  (3) 

# $�  � � + �  � 	 % = − � $2� +  � 	 −  � �% + $�� % ) �� �� +  �� 	� * (4) 

where � and � are the velocity components along the �- and 	-axis respectively. 

The physical properties of the fluid are #, � and � which correspond to the density, 

the dynamic viscosity and the pressure, respectively. On the other hand, compared 

with Newtonian fluids, the governing equations include various parameters such  

as the microrotation or angular velocity �, the micro-inertia density , a material 

parameter � and the micro rotation viscosity �� = +� +  ,� - . Those parameters  

are assumed as constants and independent. In this case, the governing equations  

are reduced to those presented by Berman [5]. 

�'�, ±ℎ( = 0,   �'�, ±ℎ( = ±�,   �'�, ±ℎ( = −.  � 	 |�0 = ±ℎ (5) 

and assuming that the flow is symmetric about 	 = 0, 

 � 	 '�, 0( = �'�, 0( = 0 (6) 

In Eq. (5); . represents a boundary condition and also indicates the process to 

which the microelements are free to rotate close to the channel walls. For instance, 

while the value . = 0 corresponds to the case where microelements close to a wall 
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are unable to rotate, the value . = 0.5 stands for weak concentrations and the  

disappearing of the antisymmetric part of the stress tensor. 

Using Berman’s similarity solution [5], the stream function and the micro- 

rotation of the micropolar fluid can be generalized by: 

 � = −��1'�( (7) 

� = ��ℎ� 2'�( (8) 

where: 

� = 	ℎ ,   � =  � 	 = − ��ℎ 1ʹ'�(,   � = −  � � = �1'�( (9) 

Furthermore, the dimensionless micropolar parameters and the Reynolds number �� where for suction �� > 0 and for injection �� < 0 defined by: 

�� = ��,   �� = ���ℎ� ,   �� = ℎ� ,   �� = #�� ℎ (10)

where �� and �� which correspond to the coupling parameter, the spin-gradient 

viscosity parameter, respectively. 

Substitution of Eqs. (6) and (7) into Eq. (5) yields the following system of  

two nonlinear differential equations: 

 '1 + ��(�78 − ��
ʹʹ − ��'��ʹʹʹ − �ʹ�ʹʹ( = 0 (11) 

 ��
ʹʹ + ��'�ʹʹ − 2
( − ����'�
ʹ − �ʹ
( = 0  (12) 

Subject to the boundary conditions assuming the symmetric flow in the channel: 

 �'0( = �ʹʹ'0( = �ʹ'1( = 0,   �'1( = 1, (13a) 

 
'0( = 
'1( = 0 (13b) 

3. Variation of parameters method for nonlinear problems 

The method of variation of parameters is a general method that has been used  

to solve nonhomogeneous linear differential equations [18]. More recently, it has 

been known from the literature that it can also be used to solve nonlinear differen-

tial equations [19-26]. In nonlinear equations, whereas the term that disrupting  

homogeneity is the function of both independent and dependent variable, in linear 

equations this term is only the function of the independent variable. 
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To illustrate the basic ideas of this method, the following general nonlinear  

differential equation can be considered: 

 ( 1)( , , , , , )nL f X       ⋯  (14) 

where L represents a linear operator from n order. The homogeneous solution of 

the Eq. (14) can be determined in the form: 

 1 ,1 2 ,2 ,( ) ( ) ( ) ...... ( )c c c n c nX c X c X c X          (15) 

where c1, c2, ....., cn are integration constants and Φc,1, Φc,2 and Φc,n form a funda-

mental set of solutions of the homogeneous equation, then a particular solution to 

Eq. (14) with the following form is desired: 

 1 ,1 2 ,2 ,( ) ( ) ( ) ( ) ( ) ( ) ( )p c c n c nX v X X v X X v X X       ⋯  (16) 

The solution procedure of the nonlinear Eq. (14) is same as the linear equations: 

 ( ) ( ) ( )c pX X X    (17) 

In Eq. (16), the particular solution functions can be determined given as: 

 
( 1)

,1 ,2 ,0

( , , , , ) ( )
( )

[ , , , ]( )

X n
n

n

c c c n

f X W X
X dXv

W X

  


  
⋯

⋯
 (18a) 

where W is the Wronskian of independent solutions of the homogeneous equation 

 

,1 ,1 ,

,1 ,2 ,

,1 ,2 ,

( 1) ( 1) ( 1)
,1 ,2 ,

[ , , , ]

c c c n

c c c n

c c c n

n n n
c c c n

W

  

  

    
   

  

⋯

⋯
⋯

⋮ ⋮ ⋱ ⋮

⋯

 (18b) 

where 

 ,1 , 1 , 1 ,( ) ( 1) [ , , , ]( )
n k

n c c k c k c nW X W X
      ⋯ ⋯  (18c) 

Because � exists on both sides of Eqs. (15) and (16), an iterative process is 

needed to solve for �. Despite the fact that not a closed-form solution owing to the 

iteration needed, the solution can still be regarded as exact provided that � is only  

a function of � and Φ because the numerical integration required by Eq. (18a)  

can be performed to an arbitrary degree of accuracy. If � is also a function of  

the derivatives of Φ, finite difference equations must be used to approximate these 

derivatives [21]. 



Application of variation of the parameters method for micropolar flow in a porous channel 23

4. Numerical solution by variation of parameters method 

Eqs. (11) and (12) can be identified as follows without taking the highest order 

derivative term into consideration: 

 �78 = 1'�, �ʹ, 
ʹʹ, �ʹʹ, �ʹʹʹ( (19a) 

 
ʹʹ = 2'�, �ʹ, �ʹʹ, 
, 
ʹ( (19b) 

In the Eq. (19), the functions F and G become: 

 1 = '��
ʹʹ + ��'��ʹʹʹ − �ʹ�ʹʹ((/'1 + ��( (20a) 

 2 = '−��'�ʹʹ − 2
( + ����'�
ʹ − �ʹ
((/�� (20b) 

Equations (19) are transformed into integral equations to the form Eq. (17)  

according to the variation of parameters method described in the previous section. 

Here, this procedure will only be explained for the Eq. (19a), and only results will 

be presented for the other equation. 

The homogeneous solution of the Eqs. (19a) are  

�;'�( = ���;.�'�( + ���;,�'�( + ���;,�'�( + ���;,�'�( = ���� + ���� + ��� + ��  

  (21) 

where c1, c2 and c3 are integration constants and fc,1, fc,2 and fc,3 are linear independ-

ent solutions of the above homogeneous equation. It is desirable that Eq. (19a)  

has a particular solution as follows: 

 �='�( = ����'�( + ����'�( + ���'�( + ��'�( (22) 

The general solution of the nonlinear Eq. (19a) is the sum of homogeneous and 

particular solutions 

 �'�( = ���� + ���� + ��� + �� + ����'�( + ����'�( + ���'�( + ��'�( (23) 

Equations (18a)-(18c) and the particular solution functions are given by: 

��'�( = 16 ? 1'�, �ʹ, 
ʹʹ, �ʹʹ, �ʹʹʹ(@�A
B

 (24a)

��'�( = − 12 ? �1'�, �ʹ, 
ʹʹ, �ʹʹ, �ʹʹʹ(@�A
B

 (24b)

��'�( = 12 ? ��1'�, �ʹ, 
ʹʹ, �ʹʹ, �ʹʹʹ(@�A
B

 (24c)
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��'�( = − 16 ? ��1'�, �ʹ, 
ʹʹ, �ʹʹ, �ʹʹʹ(@�A
B

 (24d)

Using the boundary conditions given by (13a), c1, c2 and c3 constants are  

presented as follows:  

�� = − 16 ? 1@��
B

+ 14 ? �1@��
B

− 112 ? ��1@��
B

− 12 (25a)

 �� = �� = 0 (25b) 

�� = 14 ? �1@��
B

− 12 ? ��1@��
B

+ 14 ? ��1@��
B

+ 32 (25c)

f function is obtained by substituting the functions in Eqs. (24) and c1, c2 and c3 

constants in Eq. (25) into Eq. (23): 

�'�( = �� E16 ? 1@�A
B

− 16 ? 1@��
B

+ 14 ? �1@��
B

− 112 ? ��1@��
B

− 12F − ��2 ? �1@�A
B

 

+ � E12 ? ��1@�A
B

+ 14 ? �1@��
B

− 12 ? ��1@��
B

+ 14 ? ��1@��
B

+ 32F − 16 ? ��1@�A
B

 

  (26) 

As indicated in Eq. (19a), 1 is a function of the '�, �ʹ, 
ʹʹ, �ʹʹ, �ʹʹʹ(. In this re-

spect, because the f appears on both sides and g on the right side of the Eq. (26), an 

iterative approach is required for the solution. An initial guess for the f and g func-

tions plugged into the right side of the Eq. (26). 

The problem region (0,δ) is divided into the M sub-region in order to obtain 

numerical solution of the integrals in the Eq. (26). The right sides of the equations 

are evaluated numerically via the trapezoidal rule provided that assigning an initial 

guess vector for each of the functions and a new f function is calculated. This proc-

ess is repeated until convergence is achieved. The derivatives in Eq. (26) are used 

approximately by using finite difference equations. Note that in the Eq. (26),  

the variation of parameters method reduces the solution of a nonlinear set of differ-

ential equations to a numerical integration solution. 

The same procedure is applied to Eq. (19b) and the other function is obtained  

as follows: 


'�( = � E− ? 2@��
B

+ ? �2@��
B

+ ? 2@�A
B

F − ? �2@�A
B

 (27)



Application of variation of the parameters method for micropolar flow in a porous channel 25

5. Results and discussion 

In this part of the paper, the convergence and accuracy of the solution obtained 

via the variation of parameters method is investigated. For this purpose, the solution 

of the nonlinear ordinary differential equations (26) and (27) is acquired iteratively. 

The integrals in these equations have been solved numerically using the trapezoidal 

rule by dividing the problem region into the G = 500 sub-region. Validity of the 

variation of parameters method is shown in Table 1. Excellent agreement between 

the analytical and numerical solutions is obvious in Table 1.  

Table 1. The results of VPM, OHAM [9] and numerical solution for �'�( and 
'�( 
when �� = �� = 1, �� = 0.1 and Re = –1 

η 

�'�( 
'�( 

VPM OHAM NUM VPM OHAM NUM 

0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

0.1 0.150798 0.149991 0.150798 –0.040795 –0.040103 –0.040795 

0.2 0.298451 0.296953 0.298451 –0.079260 –0.077978 –0.079260 

0.3 0.439825 0.437849 0.439825 –0.113030 –0.111348 –0.113030 

0.4 0.571811 0.569633 0.571811 –0.139680 –0.137845 –0.139680 

0.5 0.691341 0.689251 0.691341 –0.156700 –0.154969 –0.156700 

0.6 0.795401 0.793657 0.795401 –0.161460 –0.160059 –0.161460 

0.7 0.881059 0.879835 0.881059 –0.151210 –0.150267 –0.151210 

0.8 0.945482 0.944829 0.945482 –0.122990 –0.122540 –0.122990 

0.9 0.985973 0.985783 0.985973 –0.073700 –0.073611 –0.073700 

1.0 1.000000 1.000000 1.000000 0.000000  0.000000 0.000000 

 
This accuracy gives us high confidence in the validity of this problem and  

reveals an excellent agreement of engineering accuracy. This investigation is  

completed by depicting the influences of some significant parameters to evaluate 

how these parameters affect this fluid. Moreover, the variation of the velocity �'�( 

and rotation 
'�( profiles with respect to changes on independent variable '�(  

is illustrated graphically. 

The validity of the variation of parameters method is shown via Figures 2 and 3. 

Figure 2 has been plotted in order to see the influence of velocity profile �'�( on 

the values of the � in the case of injective. As the value of � increases the velocity 

profile of �'�( increases for injection. On the other hand, Figure 3 displays the  

rotation profile 
'�( of the fluid with respect to changes in values of the �. It is 

noted that 
'�( decreases with an increase in the value of �, up to approximately 
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� = 0.6 and following increases with increasing �. This phenomenon can be  

explained as a consequence of that increment in 
'�( from suction to injection. 

Figure 4 displays the effects of the Reynolds number on the velocity profile of 

the fluid. It is noted that the Reynolds number grows with increasing the velocity 

profile of �'�( for injection. This finding is expected consequence of the injection 

on the channel walls. Figure 5 depicts the effects of Reynolds numbers on the rota-

tion profile of the fluid. In a general manner, there is an increment in the rotation 

profile from suction to injection. It is noted that 
'�( reduces with an increment  

in the Reynolds number, up to roughly � = 0.6 and thereafter increases with  

increasing Reynolds number. It is observed that with an increase in the value of the 

Reynolds number the point at which minimum rotation occurs does not move away 

from the origin of the channel.  

 

 

Fig. 2. The variation of the velocity 

profile with � when �� = �� = 1,  �� = 0.1 and Re = 1 

Fig. 3. The variation of the rotation 

profile with J when KL = KM = 1,  KN = 0.1 and Re = –1 

 

Fig. 4. Velocity profile �'�( for different 

values of Reynolds number when  �� = �� = 1, and �� = 0.1 

Fig. 5. Rotating profile 
'�( for different 

values of Reynolds number when  �� = �� = 1, and �� = 0.1 
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Fig. 6. Effects of different values of �� 

on rotating profile 
'�( when �� = 1, �� = 0.1 and Re = –1 

Fig. 7. Effects of different values of �� 

on rotating profile 
'�( when �� = 1, �� = 0.1 and Re = –1 

Figures 6-8 shows the effects of various values of ��, �� and �� on the rotating 

profile. All the above results are obtained when �� and �� are fixed on 1 and ��  

is fixed on 0.1. It is observed that these parameters have no a crucial function in  

velocity profiles, and therefore are not remarked upon in this paper. It can be seen 

that increases in the values �� and �� have different results in comparison with �� 

increasing. The rotating profile 
'�( increases with increase of �� and decreases 

with increase of �� and ��.  

 

 

Fig. 8. Effects of different values of �� on rotating profile 
'�(  

when �� = �� = 1, and Re = –1 

6. Conclusion 

In the present study we have presented an analysis of the micropolar fluid flow 

in a porous channel through the channel walls. The differential form of the govern-

ing equation is formulated via a similarity transformation given by Berman [5]. 

The nonlinear differential equations of the micropolar flow model are computed 

via the variation of parameters method which has recently been successfully  

applied to nonlinear heat transfer problems. This approach has not been previously 

employed to analyze a model problem of micropolar flow. The numerical solutions 
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are obtained via Matlab bvp4c solver. It is observed that there is a very excellent 

agreement between the solutions obtained from VPM and other methods that were 

compared. 

After this confidence, results are demonstrated for the rotating and velocity 

when different values of Reynolds number Re and ��, ��, �� parameters. It is  

observed that an increase in the Reynolds number has various affects on velocity 

and rotating profile and increases in the value �� and �� have different results in 

comparison with �� increasing. 
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