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Abstract. The paper is focused on the mathematical and numerical approaches for the 

thermoelasticity problem in the three-dimensional domain. The mathematical description  

of considered problem is based on the second order differential equations of elasticity with 

the term describing thermal deformations. The numerical model uses the discontinuous 

Galerkin method which is widely used to solve the problems of hydrodynamics. The pre-

sented paper shows the possibility of using the mentioned method to solve the problem of 

thermomechanics. 
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1. Introduction 

One of the reasons for the change of volume and shape of the bodies is tempera-

ture. Most often, the volume of the body increases as the temperature increases, 

e.g. a heated steel bar increases its dimensions. If the body, which is thermally 

loaded, is a free body then the change in volume does not generate stress. In the 

case of a non-free body, the imposed constraints make it impossible to change  

the volume freely, which results in stresses. If the stress level does not exceed  

the yield strength of the material the body is made of, then this is the problem of 

thermoelasticity.  

Thermoelasticity relates to the analysis of elastic bodies exposed to the tempera- 

ture. Additional loads may be forces or pressure. In the general case, the mechanical 

and thermal loads are mutually coupled.  

One of the numerical methods used to solve differential equations describing 

many physical phenomena is the discontinuous Galerkin method (DGM). DGM is 

a method that has been widely described in literature since the 1970s, its history 

and basics are most widely described in [1]. However, there are not many papers 
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on its application in the issues of linear elasticity. DGM in the theory of linear  

elasticity develops in two directions. The first direction of development includes 

the use of LDG (Local Discontinuous Galerkin) and IPDG (Interior Penalty Dis-

continuous Galerkin) [2-6]. The second direction of development, MDG (Mixed 

Discontinuous Galerkin) is based on the use of so-called mixed elements contain-

ing two base spaces of functions with different orders - lower for approximation of 

displacements and higher for approximation of stresses [7, 8]. 

2. Mathematical model 

Let’s consider a three-dimensional region   presented in Figure 1. Displace- 

ments  zyxu ,,  of the selected part of external surface are considered as given.  

The temperature distribution  zyxT ,,  in the whole region is also known.  

 

 

Fig. 1. Considered volume   with the temperature field  zyxT ,,  and displacements 

 zyxu ,,  on the bottom surface   

The main goal is to obtain the solution in the form of components of the dis-

placement vector. The starting point of consideration is the system of equilibrium 

equations: 
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where x , y , z  are normal stresses, xy yx  , xz zx  , yz zy   are shear stresses. 

The use of stresses in the equations (1) is not convenient to consider boundary  
 

conditions. Therefore, equations (1) will be transformed in the next chapter into  
 

so-called displacement form. 
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3. Numerical model 

The discontinuous Galerkin method is derived from the criterion of the weighted 

residuals method, where the differential equation is multiplied by the weight func-

tion and integrated over the considered domain. The integration is performed in  

a single finite element. This involves the necessity of taking into account the 

boundary integrals of the so-called numerical fluxes in each finite element. 

The first stage of the DG method is spatial discretization of the considered  

domain. In this case tetrahedral elements are used (Fig. 2). 
 

 

Fig. 2. Spatially discretized domain 

Assume that the domain   consists of N tetrahedrons: 
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Using the criterion of the weighted residuals method for j-th element equations (1) 

are multiplied by the weighting function   and integrated over the volume 
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The following relationships between stresses and strains are used: 
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where x , y , z  are linear strains, xy , yz , xz  represent angular strains, T  is  

a thermal strain, 1f , 2f , 3f , 4f  are the coefficients of elasticity listed in Table 1.  

Table 1. Coefficients of elasticity 

f1 
 

  



211

1



E
 

f2   1 1 2
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The above coefficients depend on the Young’s modulus E [N/m
2
] and Poisson’s 

ratio ν [–]. Additionally the following geometrical relationships are used: 

 

,

,

,

T

xy yxx

y yz zy

z xz zx

T

u vu

y xx

v v w

y z y

w u w

z z x

 

 

  

  

 
    
 

  
   
  

  
   
  

 (5) 

where u , v , w [m] are the components of the displacement vector, T  [K] repre-

sents the temperature difference between the reference and current temperatures  

in the considered body,   [K
–1

] is a linear coefficient of thermal expansion. 

Using geometrical relationships (5) in equations (4), the following displacement 

dependent form of stresses are obtained: 
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 (6) 

Substituting stresses in equations (3) by the relations (6), one obtains the dis-

placement dependent integral form of thermoelasticity equations: 
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Unfortunately, the DG method is not suitable for the second order differential 

equations. Therefore, in order to lower the order of equations (7), additional variables 

are introduced: 
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After using the relation (8) in equations (7) one can write: 
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The criterion of the weighted residuals method is also applied to equations (8):  
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Equations (9)-(10) are the set of twelve equations with twelve unknowns which 

should be supplemented by the Dirichlet (11) and Neumann’s boundary conditions 

(12) respectively: 

  , , : , ,b b bx y z u u v v w w     (11) 
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The application of the DG method is presented for the first equation from the set 

(10). Operations for the other equations are done in the same way. The integration 

by parts is used and  u
xq  and u  are replaced by the approximation  u

xhq  and hu : 
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where xn  is the component of the vector perpendicular to the surface of the finite 

element, whereas,  u
xhq  and hu  are expressed as follows:  
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where i  is the i-th shape function of the finite element, m  is the number of nodes 

in the finite element depending on the order of approximation p: 

 
   1 2 3

6

p p p
m

  
  (16) 

To simplify further considerations, the weight functions are assumed the same 

as the shape functions   . The quantity hû  in equation (13) is the so-called  

numerical flux, which is defined in literature in various ways [9]. In the presented 

description the so-called central flux is used: 

  1
ˆ

2
h h hu u u    (17) 

where “+” and “–“ are boundary values calculated in j-th finite element and adjacent 

elements respectively.  
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According to the presented assumptions, equation (13) can be written as follows: 
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The quantities  u
xhq , hu , 


hu  are assumed unknown, while 


hu  is given. Therefore, 

equation (18) should be rearranged, so that the elements containing the unknown 

terms are on the right, while the rest are moved on the left: 
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The rest of equations from the set (10) are obtained in the same way. The equa-

tions from the set (9) must be also rearranged in order to satisfy DG assumption 

The first equation from (9) is taken as an example: 
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After replacing the exact solution  u
xq  by approximation 

 u
xhq , the first term in 

(20) is written as follows: 
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According to [9], the central stream  u
xhq̂  equals: 
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where 11C  is a constant providing convergence of the solution whose value is  

chosen experimentally.  

Using relation (22) in equation (21) one can write: 
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The equation (23) can be written as the sum of integrals:  
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Assuming that 2
x x xn n n  , 2
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Other terms appearing in equation (20) are determined analogically:  
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Using relations (25)-(32) in equation (20) it can be written: 

       

     

       

1 3 3 3

2 3 2

1 3 3 3

2

1 1 1 1

2 2 2 2

1

2

j j j j

j j j

j j j j

u u u v

xh yh zh xh

v w w

yh xh zh

u u u v

x xh y yh z zh y xh

x

f q dV f q dV f q dV f q dV
x y z y

f q dV f q dV f q dV
x z x

f n q ds f n q ds f n q ds f n q ds

f n q

   

  

   



   

  

   

   

   
    

   

  
   

  

    



   

  

   

     

   

     

   

3 2

2 2 2
11 1 3 3 11 3 2

11 3 2 1 3

3 3

1 1

2 2

1 1

2 2

1 1

2 2

j j j

j j

j j j

j

v w w

yh z xh x zh

x y z h y x h

u u

z x h x xh y yh

u v

z zh y xh

ds f n q ds f n q ds

C f n f n f n u ds C f f n n v ds

C f f n n w ds f n q ds f n q ds

f n q ds f n q ds

 

 

  

 

  

  

 

 

 

  

 



  

     

    

 

  

 

  

    

     

 

2 3

2 2 2
2 11 1 3 3 11 3 2

11 3 2 4 4

1 1

2 2

1

2

1

2

j j j

j j j

j j j

v w

x yh z xh

w

x zh x y z h y x h

z x h h x h

f n q ds f n q ds

f n q ds C f n f n f n u ds C f f n n v ds

C f f n n w ds f T dV f n T ds
x

 

  


   

 

  

  

  



  

   

      


     



  

  

  

(33) 



E. Węgrzyn-Skrzypczak 124

The last two equations from the set (10) are derived analogously. The terms 

from the left side of the equations build the stiffness matrix, while the terms from 

the right form the vector of boundary values. The following matrices are intro-

duced: 

 
 e

T dV
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The above matrices and vectors are used to form the stiffness matrix K (38)  

and the vector B (42). The dimensions of K depend on the approximation order.  

In the case of linear approximation p = 2 K contains 48 rows and columns. As p  

increases, the matrix dimensions also increase rapidly, assuming 120x120 for p = 2  

and 240x240 for p = 3. 
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  B Fy H  (42) 

Finally the set of equations can be written in the well-known form: 

 Kx B  (43) 
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The calculation process must be done for each finite element. In each iteration  

it is necessary to solve N systems of equations whose relative size is not large.  

The final solution is obtained after many iterations. K is built only once at the start 

of the process while B must be rebuilt in each iteration. Boundary conditions are 

introduced by the modification of appropriate values in the vector y. During the  

iterative process the values from the boundaries are gradually propagated into  

the internal part of the domain. After each iteration, calculated nodal displacements 

are compared to the values obtained in the previous iteration. The calculation  

process is finished when the difference between nodal displacements from the two 

last iterations tends to zero. Obtained displacements can be used to find strains  

according to (5) and stresses using (6). 

6. Conclusions 

The presented mathematical and numerical models of the three dimensional 

problem of thermoelasticity show the methodology of the Discontinuous Galerkin 

Method in the case of second order partial differential equations. On the basis of 

presented considerations a computer program can be easily created. Unfortunately, 

the number of iterations necessary to achieve reasonable accuracy of results can be 

very large, which drastically lengthens the calculation process compared to con-

tinuous approach. The advantage of DGM is that each finite element is independent 

thus the calculation process can be easily parallelized. 
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