ON A RECURRENCE FOR PERMANENTS OF A SEQUENCE OF 3-TRIDIAGONAL MATRICES

Pavel Trojovský, Iva Zvoníková
Department of Mathematics, Faculty of Science University of Hradec Králové, Hradec Králové, Czech Republic pavel.trojovsky@uhk.cz,ivazvonikova@gmail.com

Received: 14 July 2019; Accepted: 11 December 2019

Abstract

This is a corrigendum of the paper: Küçük, A. Z. \& Düz, M. (2017). Relationships between the permanents of a certain type of k-tridiagonal symmetric Toeplitz and the Chebyshev polynomials. Journal of Applied Mathematics and Computational Mechanics, 16, $75-86$. We will show that Remark 9, on page 84, does not hold, what is the consequence of the incorrect proof, which authors formulated there.

MSC 2010: 15A15, 11 B05
Keywords: permanent, k-tridiagonal matrix, Toeplitz matrix, recurrence relation, Chebyshev polynomial of the second kind

1. Introduction

The so-called k-tridiagonal matrices (this name was introduced by El-Mikkawy and Sogabe [1]) were first studied by Egerváry and Szász in [2]. Perhaps the most important non-trivial case is due to Losonczi [3]. A very recent and important survey in this topic can be found in da Fonseca and Kowalenko [4].

The k-tridiagonal matrices $\mathbf{T}_{n}^{(k)}\left(\mathbf{D}_{-k}, \mathbf{D}_{0}, \mathbf{D}_{k}\right)$ are defined by the following way

$$
\left(\begin{array}{ccccccccc}
d_{1} & 0 & \cdots & \cdots & 0 & a_{1} & 0 & \cdots & 0 \tag{1}\\
0 & d_{2} & \ddots & \ddots & \ddots & 0 & \ddots & \ddots & \vdots \\
\vdots & \ddots & 0 \\
0 & \ddots & \ddots & \ddots & 0 & \ddots & \ddots & \ddots & a_{n-k} \\
0 & \ddots & \ddots & \ddots & d_{k} & 0 & \ddots & \ddots & 0 \\
b_{k+1} & \ddots & \ddots & \ddots & 0 & d_{k+1} & \ddots & \ddots & 0 \\
0 & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & b_{n} & 0 & \cdots & \cdots & 0 & d_{n}
\end{array}\right)_{n \times n}
$$

where sequences $\left\{d_{j}\right\}_{j=1}^{n},\left\{a_{j}\right\}_{j=1}^{n-k}$ and $\left\{b_{j}\right\}_{j=k+1}^{n}$ create the main diagonal \mathbf{D}_{0}, the k-th superdiagonal \mathbf{D}_{k} and the k-th subdiagonal \mathbf{D}_{-k}, respectively. ${ }^{1}$ Thus, for the general k-tridiagonal matrix we use notation $\mathbf{T}_{n}^{(k)}\left(\mathbf{D}_{-k}, \mathbf{D}_{0}, \mathbf{D}_{k}\right)$ or directly

$$
\mathbf{T}_{n}^{(k)}\left(\left\{b_{j}\right\}_{j=k+1}^{n},\left\{d_{j}\right\}_{j=1}^{n},\left\{a_{j}\right\}_{j=1}^{n-k}\right)
$$

but for the k-tridiagonal Toeplitz matrix we can write shortly $\mathbf{T}_{n}^{(k)}(b, d, a)$, since for diagonals of matrix (1) hold

$$
\left\{d_{j}=d\right\}_{j=1}^{n},\left\{a_{j}=a\right\}_{j=1}^{n-k}, \text { and }\left\{b_{j}=b\right\}_{j=k+1}^{n}
$$

Küçük, Düz [5] studied, recursive relations between the Chebyshev polynomials of the second kind (for more information, see [6]), which can be defined for $n>2$ by the recurrence relation

$$
U_{n}(x)=2 x U_{n-1}(x)-U_{n-2}(x)
$$

with initial values $U_{0}(x)=1$ and $U_{1}(x)=2 x$, and the permanents (the definition and many properties of permanents you can find in [7]) of a special type of matrix (1), namely k-tridiagonal symmetric Toeplitz matrix $\mathbf{T}_{n}^{(k)}(i, 2 x, i)$, where i is the imaginary unit, i. e., the matrix with entries

$$
t_{j m}^{(k)}= \begin{cases}2 x, & j=m \\ i, & j=m \pm k \\ 0, & \text { otherwise }\end{cases}
$$

where $1 \leq j, m \leq n$.
To prove [5, Conjecture 8] first da Fonseca in [8] showed that the permanent of the matrix $\mathbf{T}_{n}^{(k)}(i, 2 x, i)$ is equal to the permanent of the matrix $\mathbf{T}_{n}^{(k)}(-1,2 x, 1)$, with respect to the fact, that the permanent of a square matrix equals the sum of the weights of all cycle-covers of its underlying directed graph. Then, he used a result on convertible matrices from his paper [10] (some generalizations can be found in [11]) to show that the permanent of matrix $\mathbf{T}_{n}^{(k)}(-1,2 x, 1)$ is equal to the determinant of the matrix $\mathbf{T}_{n}^{(k)}(1,2 x, 1)$. Thus, he derived that

$$
\begin{equation*}
\operatorname{per} \mathbf{T}_{n}^{(k)}(i, 2 x, i)=\operatorname{det} \mathbf{T}_{n}^{(k)}(1,2 x, 1) \tag{2}
\end{equation*}
$$

Borowska et al. [12-14] dealt with determinants of some pentagonal and heptadiagonal symmetric Toeplitz matrices. Inter alia, they paid attention to the determinant of the following heptadiagonal matrix

[^0]\[

\mathbf{A}_{n}=\left($$
\begin{array}{cccccccccc}
a & b & c & d & & & & & & \tag{3}\\
b & a & b & c & d & & & & & \\
c & b & a & b & c & d & & & & \\
d & c & b & a & b & c & d & & & \\
& d & c & b & a & b & c & d & & \\
& & \ddots & \\
& & & d & c & b & a & b & c & d \\
& & & & d & c & b & a & b & c \\
& & & & & d & c & b & a & b \\
& & & & & & d & c & b & a
\end{array}
$$\right)_{n \times n}
\]

To find a recurrence relation for determinants of matrix \mathbf{A}_{n} they introduced the following two auxiliary heptadiagonal matrices

$$
\mathbf{A}_{n}=\left(\begin{array}{cccccccccc}
a & b & c & d & & & & & & \\
b & a & b & c & d & & & & & \\
c & b & a & b & c & d & & & & \\
d & c & b & a & b & c & d & & & \\
& d & c & b & a & b & c & d & & \\
& & \ddots & \\
& & & d & c & b & a & b & c & d \\
& & & & d & c & b & a & b & c \\
& & & & & d & c & b & a & b \\
& & & & & & \mathbf{0} & d & c & b
\end{array}\right)_{n \times n}
$$

and

$$
\widehat{\mathbf{A}}_{n}=\left(\begin{array}{cccccccccc}
a & b & c & d & & & & & & \\
b & a & b & c & d & & & & & \\
c & b & a & b & c & d & & & & \\
d & c & b & a & b & c & d & & & \\
& d & c & b & a & b & c & d & & \\
& & \ddots & \\
& & & d & c & b & a & b & c & \mathbf{0} \\
& & & & d & c & b & a & b & d \\
& & & & & d & c & b & a & c \\
& & & & & & \mathbf{0} & d & c & a
\end{array}\right)_{n \times n}
$$

They denoted determinants of matrices $\mathbf{A}_{n}, \bar{A}_{n}$, and $\widehat{\mathbf{A}}_{n}$ by W_{n}, \bar{W}_{n}, and \widehat{W}_{n}, respectively, and derived the following system of linear recurrence relations (see formulae (4) and (5) in [14], where all the needed initial conditions can be found too)

$$
\begin{align*}
W_{n+7} & =a W_{n+6}+b d\left(b d-2 c^{2}\right) W_{n+3}+d^{2}\left(2 c^{3}-4 b c d+b^{2} c+a d^{2}\right) W_{n+2} \\
& +d^{3}\left(2 c^{2} d+b^{2} d-b c^{2}-d^{3}\right) W_{n+1}-b c d^{5} W_{n}-b \bar{W}_{n+6}+b c \bar{W}_{n+5} \\
& +d\left(2 a c-b^{2}\right) \bar{W}_{n+4}+b d^{2}(2 c-a) \bar{W}_{n+3}+d^{3}\left(2 b d-b^{2}-c^{2}\right) \bar{W}_{n+2} \\
& +c d^{4}(b-2 d) \bar{W}_{n+1}+b d^{6} \bar{W}_{n}-c^{2} \widehat{W}_{n+5}+d(b c-a d) \widehat{W}_{n+4}, \tag{4}\\
\bar{W}_{n+6} & =b W_{n+5}-b c d^{2} W_{n+2}+d^{3}\left(c^{2}-b d\right) W_{n+1}+c d^{5} W_{n}-c \bar{W}_{n+5} \\
& +b d \bar{W}_{n+4}+a d^{2} \bar{W}_{n+3}+b d^{3} \bar{W}_{n+2}-c d^{4} \bar{W}_{n+1}-d^{6} \bar{W}_{n}-c d \widehat{W}_{n+4}, \\
\widehat{W}_{n+2} & =a W_{n+1}-c^{2} W_{n}+2 c d \bar{W}_{n}-d^{2} \widehat{W}_{n}
\end{align*}
$$

2. Main result

Küçük, Düz [5] formulated the following proposition (we have made a small technical textual modification, that does not change their assertion, to avoid copying the whole text above this proposition)

Remark 1

$$
\begin{equation*}
\operatorname{per} \mathbf{T}_{n}^{(3)}(i, 2 x, i), \operatorname{per} \mathbf{T}_{n}^{(4)}(i, 2 x, i), \operatorname{per} \mathbf{T}_{n}^{(5)}(i, 2 x, i), \ldots \tag{5}
\end{equation*}
$$

cannot be written in terms of themselves, thus as a self-recurrence for every of these permanents individually.

Küçük, Düz formulated the proof of this Remark 1 for the case $\operatorname{per} \mathbf{T}_{n}^{(3)}(i, 2 x, i)$, but the idea of this proof is incorrect, what we show by proving that there is a selfrecurrence for $\operatorname{per} \mathbf{T}_{n}^{(3)}(i, 2 x, i)$.

For the simplification of notation, we will use for permanent of matrix $\mathbf{T}_{n}^{(3)}(i, 2 x, i)$ the following denotation

$$
\begin{equation*}
p_{n}:=\operatorname{per} \mathbf{T}_{n}^{(3)}(i, 2 x, i) \tag{6}
\end{equation*}
$$

where n is a positive integer.
Theorem 1 Let n be any positive integer. The sequence $\left\{p_{n}\right\}$, defined by (6), satisfies the following recurrence relation for $n>8$

$$
\begin{equation*}
p_{n}=2 x p_{n-1}-p_{n-2}+2 x p_{n-3}-4 x^{2} p_{n-4}+2 x p_{n-5}-p_{n-6}+2 x p_{n-7}-p_{n-8} \tag{7}
\end{equation*}
$$

with the initial values

$$
\begin{align*}
& p_{1}=2 x, p_{2}=4 x^{2}, p_{3}=8 x^{3} \\
& p_{4}=4 x^{2}\left(4 x^{2}-1\right), p_{5}=2 x\left(4 x^{2}-1\right)^{2} \\
& p_{6}=\left(4 x^{2}-1\right)^{3}, p_{7}=4 x\left(2 x^{2}-1\right)\left(4 x^{2}-1\right)^{2} \tag{8}\\
& p_{8}=(4 x)^{2}\left(2 x^{2}-1\right)^{2}\left(4 x^{2}-1\right)
\end{align*}
$$

Proof Combining identities (2) and (6) we get $p_{n}=\operatorname{det} \mathbf{T}_{n}^{(3)}(1,2 x, 1)$, but this determinant is a special case of the determinant of the heptadiagonal matrix \mathbf{A}_{n} in (3), when we set $a=2 x, b=c=0$, and $d=1$. Similarly, we denote determinants of matrices $\overline{\mathbf{A}}_{n}$ and \widehat{A}_{n} by \bar{p}_{n} and \widehat{p}_{n}, respectively. Then, from (4) we get the following system of three homogeneous linear recurrences for sequences $\left\{p_{n}\right\},\left\{\bar{p}_{n}\right\}$ and $\left\{\widehat{p}_{n}\right\}$

$$
\begin{align*}
p_{n+6} & =2 x p_{n+5}+2 x p_{n+1}-p_{n}-2 x \widehat{p}_{n+3}, \\
\bar{p}_{n+6} & =2 x \bar{p}_{n+3}-\bar{p}_{n}, \tag{9}\\
\widehat{p}_{n+2} & =2 x p_{n+1}-\widehat{p}_{n}
\end{align*}
$$

Since we are only interested in the sequence $\left\{p_{n}\right\}$, we can omit the second recurrence from the previous system to take the following system of two linear recurrences for sequences $\left\{p_{n}\right\}$ and $\left\{\widehat{p}_{n}\right\}$

$$
\begin{aligned}
p_{n+6} & =2 x p_{n+5}+2 x p_{n+1}-p_{n}-2 x \widehat{p}_{n+3} \\
\widehat{p}_{n+2} & =2 x p_{n+1}-\widehat{p}_{n}
\end{aligned}
$$

which can be easily reduced by substitution method to the self-recurrence (7) of the sequence $\left\{p_{n}\right\}$. Initial conditions (8) for $p_{i}, 1 \leq i \leq 7$, we easily get as special cases of (5) in [14] and the initial condition for p_{8} we can compute from (4) in [14]. Thus, the proof is complete.

3. Conclusions

In this article, our main purpose was to show that the statement in [5, Remark 9] is incorrect. For this purpose, we have found the self-recurrence for the sequence of permanents of the 3-tridiagonal Toeplitz matrix $\mathbf{T}_{n}^{(3)}(i, 2 x, i)$. Our derivation was based on two substantial previous results. First, we used da Fonseca [8], in which the author showed that the permanent of matrix $\mathbf{T}_{n}^{(k)}(i, 2 x, i)$, studied by Küçük and Düz [5], is equal to the determinant of the matrix $\mathbf{T}_{n}^{(k)}(1,2 x, 1)$. Subsequently, we used Borowska and Łacińska [14], in which authors found the recurrence system for calculating determinants of the heptadiagonal Toeplitz matrices.

Acknowledgement

The author is very grateful to the referees for their very helpful comments that helped to improve the quality of this paper, in particular by bringing our attention to a classical result of Egerváry and Szász [2].

The work has been supported by Specific Research Project of Faculty of Science, University of Hradec Králové, No. 2101, 2018.

References

[1] El-Mikkawy, M.E.A., \& Sogabe, T. (2010). A new family of k-Fibonacci numbers. Appl. Math. Compиt., 215, 4456-4461.
[2] Egerváry, V.E., \& Szász, O. (1928). Einige Extremalprobleme im Bereiche der trigonometrischen Polynome. Math. Z., 27(1), 641-652.
[3] Losonczi, L. (1992). Eigenvalues and eigenvectors of some tridiagonal matrices. Acta Mathematica Hungarica, 60(3), 309-332.
[4] da Fonseca, C.M. \& Kowalenko, V. (2019). Eigenpairs of a family of tridiagonal matrices: three decades later. Acta Math. Hungar.
[5] Küçük, A.Z., \& Düz, M. (2017). Relationships between the permanents of a certain type of k-tridiagonal symmetric Toeplitz and the Chebyshev polynomials. Journal of Applied Mathematics and Computational Mechanics, 16, 75-86.
[6] Mason, J.C., \& Handscomb, D.C. (2003). Chebyshev Polynomials. Boca Raton, USA: Chapman and Hall/CRC Press Company.
[7] Minc, H. (1978). Permanents. Reading: Addison-Wesley.
[8] da Fonseca, C.M. (2018). On some conjectures regarding tridiagonal matrices. Journal of Applied Mathematics and Computational Mechanics, 17(4), 13-17.
[9] https://www.ibm.com/support/knowledgecenter/en/SSFHY8_6.1/reference/am5gr_cdst.html
[10] da Fonseca, C.M. (2011). An identity between the determinant and the permanent of Hessenberg type-matrices. Czechoslovak Mathematical Journal, 61(136), 917-921.
[11] da Cruz, H. F., Rodrigues, I. I., Serodio, R., Simoes, A., \& Velhinho, J. (2017). Convertible Subspaces of Hessenberg-Type Matrices. Mathematics, 5(4), Article number: 79
[12] Borowska, A., Łacińska, L., \& Rychlewska, J. (2013). On determinant of certain pentadiagonal matrix. Journal of Applied Mathematics and Computational Mechanics, 12(3), 21-26.
[13] Borowska, A., Łacińska, L., \& Rychlewska, J. (2014). A system of linear recurrence equations for determinant of pentadiagonal matrix. Journal of Applied Mathematics and Computational Mechanics, 13(2), 5-12.
[14] Borowska, A., \& Łacińska, L. (2014). Recurrence form for determinant of a heptadiagonal symmetric Toeplitz matrix. Journal of Applied Mathematics and Computational Mechanics, 13, 19-26.

[^0]: ${ }^{1}$ Here we use the notation for the numbering diagonals, which can be found, e.g., in [9].

