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Abstract. Using the idea of the partial derivative with respect to the ordinate of a given
mathematical function, a new numerical scheme having third order convergence has been
devised for solving initial value problems in ordinary differential equations. Such problems
are deemed to be indispensable in diverse fields of science, medical and engineering and are
most often required to be solved by the numerical schemes. In view of this, the proposed
numerical scheme is found to be efficient in solving both autonomous and non-autonomous
type of problems as supported by some numerical experiments in the present study. Using
the Taylor expansion for the slopes involved in the scheme, the leading term of the local
truncation error is shown to have contained O(h4) which proves third order accuracy of the
scheme. In addition to this, consistency and linear stability analysis of the proposed scheme
has extensively been discussed. Numerical experiments show better performance of the
proposed numerical scheme when compared with existing numerical schemes of the same
order as that of the scheme proposed. CPU time (seconds), maximum absolute relative error
and the absolute relative error, computed at the last grid point of the integration interval
for the associated initial value problem, are the parameters to test the performance of the
proposed numerical scheme. MATLAB Version: 9.4.0.813654 (R2018a) in double-precision
on a personal computer equipped with a Processor Intel (R) Core(TM) i3-4500U CPU@
1.70 GHz running under the Windows 10 operating system has been employed in order to
carry out all the required numerical computations.
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1. Introduction

Initial value problems in ordinary differential equations have always been a major
concern for many mathematicians and physicists related to different fields of study.
This is so because the initial value problems have played an important role in mod-
eling very important physical laws of nature. The theory of differential equations
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is used to understand the marginal analysis in economics, motion of planets in the
solar system, RL, RC and RLC series circuits in electrical circuits, laws of Newton in
classical mechanics, rotation of a fluid in computational fluid dynamics, mass-spring
system in mechanical engineering, volume in the single compartmental lung in the
clinical medicine, drainage of a liquid from a container in hydrodynamics, snowplow
model in dynamics, designing a solar collector, Lotka-Volterra model in population
dynamics, mixing problems in chemistry, heating and cooling of buildings, Stefan’s
law of radiation, spread of a disease in medical science, chemical reactions, deflec-
tion of a beam in civil engineering, nonlinear pendulum in mechanics , forgetfulness
and theory of learning and many more, (see for example [1–9]). Thus, the study
of differential equations complete the understanding of many fields indispensable to
mathematicians, engineers, physicists, businessmen, medical professionals; just to
name a few.

Despite the frequent occurrence of these mathematical models in the number of
interesting areas, it cannot be denied that most of these models are not exactly solv-
able mainly due to the involvement of nonlinear terms and stiffness of the problem
in particular [10]. In other words, their solutions can neither be represented in terms
of elementary mathematical functions nor can they be found. This is where numeri-
cal techniques come to our rescue. With the advent of digital computers, it has now
become extremely simple to get accurate approximate solutions to mathematical
models once considered to be unfathomable. Instead of producing a closed form
solution for a model, numerical techniques generate a sequence of results in a dis-
crete fashion which is easily tabulated for graphical interpretation of the solution.
One mathematical model is different from other in many respects such as physical
interpretation of the models, characteristics of parameters contained therein, and
given conditions. Therefore, one numerical technique is not sufficient to serve the
general purpose, thereby leading many researchers to devise techniques each suitable
for a particular set of problems and this search continues to this day.

Various scholars have either devised new numerical techniques to solve initial
value problems or improved existing ones in many aspects such as convergence
rate, order of accuracy, stability, efficiency, computational cost, number of slope
evaluations per integration step, speed and implementation [11]. Standard numeri-
cal techniques to solve initial value problems in ordinary differential equations in-
clude linear explicit and implicit Runge-Kutta techniques, linear explicit and implicit
Adams-Bashforth-Moulton schemes, exponential schemes, multiderivative schemes,
backward differentiation formulae, and a few others [12]. Among the nonstandard;
improved linear explicit Runge-Kutta schemes with reduced slope evaluations,
accelerated Runge-Kutta schemes, singly-implicit Runge-Kutta schemes, A-stable
Runge-Kutta collocation schemes, two-derivative Runge-Kutta schemes,
semi-implicit hybrid schemes, explicit and implicit block schemes, and the list goes
on as can be found in [13–17]. Apart from these, nonlinear/rational numerical tech-
niques to solve mathematical models having characteristics of stiffness and singular-
ity have been developed [18]. In addition to this, adaptive numerical techniques play
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their roles where the solution of the problem changes rapidly in some portions of
the integration interval and slowly in others [19]. Apart from these, time fractional
and partial differential equations are also of major importance as studied in [20–25].

2. Derivation of the proposed scheme

Consider a well-posed initial value problem of the form

(3)

dy(x)
dx

= f (x,y(x)), y(x0) = y0

y, f (x,y(x)) ∈ R, x ∈ [a,b]⊂ R
(1)

This problem has been assumed to have a unique continuously differentiable solution
y(x) where y(xn) ≈ yn so that yn is considered to be approximation to the analytical

(exact) solution y(x) at x = xn along the integration interval [a,b] with h =
|b−a|

n
as

a constant step-size used at per integration step.
Generally, a linear single-step explicit numerical algorithm to solve an initial value

problem is given as:

yn+1 = yn +hφ(xn,yn;h) (2)

where φ f (xn,yn;h) can be expressed in terms of Taylor series expansion of an arbi-
trary function f (x,y). Moreover, the Taylor series expansion of y(xn + h) is of the
form:

y(xn +h) =

y(xn)+h f +
1
2!

h2 ( fx + f fy)+
1
3!

h3 ( fxx +2 f fxy + f 2 fyy + f f 2
y + fx fy

)
+

1
4!

h4
(

fxxx +3 f fxxy +3 f 2 fxyy +5 f fy fxy +3 fx fxy + f 3 fyyy

+4 f 2 fy fyy +3 f fx fyy + f f 3
y + fx f 2

y + fxx fy

)
+O

(
h5)

The proposed scheme of the present study has been generally set up as

(4)yn+1 = yn +hϕ f (xn,yn;h)

where

ϕ f (xn,yn;h) = b1k1 +b2k2 +b3k3

k1 = f (xn,yn) , k2 = f (xn +a2h,yn +hk1 (b21 +hc21 fy))

k3 = f
(
xn +a3h,yn +h(b31k1 +b32k2)+h2c31k1 fy

)



76 S. Qureshi, O. Adeyeye, A.A. Shaikh

Expanding k2 and k3 in Taylor’s series, we obtain

k2 =

f +

(
f fyb21 + fxa2

)
h

+

(
1
2

fyy f 2b2
21 + fxy f a2b21 + f f 2

y c21 +
1
2

fxxa2
2

)
h2

+

(
1
6

fyyy f 3b3
21 +

1
2

fxyy f 2a2b2
21 + fyy f 2 fyb21c21

+
1
2

fxxy f a2
2b21 + fxy f fya2c21 +

1
6

fxxxa3
2

)
h3 +O(h4)

k3 =

f +( fy f b32 + fy f b31 + fxa3)h+



1
2

fyy f 2b2
32 + fyy f 2b31b32+

1
2

fyy f 2b2
31 + fxy f a3b32+

fxy f a3b31 + f 2
y f c31 +

1
2

fxxa2
3+

f 2
y f b21b32 + fx fya2b32

h2

+



1
2

fyyy f 3b31b2
32 +

1
2

fyyy f 3b2
31b32 +

1
2

fxyy f 2a3b2
32 +

1
2

fxyy f 2a3b2
31+

1
2

fxxy f a2
3b32 +

1
2

fxxy f a2
3b31 +

1
2

fy f 2 fyyb2
21b32 + f 3

y f b32c21+

fy f fxya2b21b32 +
1
2

fy fxxa2
2b32 +

1
6

fyyy f 3b3
32 +

1
6

fyyy f 3b3
31+

fxyy f 2a3b31b32 + fyy f 2 fyb31c31 + fxy f fya3c31 + fy f 2 fyyb21b31b32+

fx f fyya2b31b32 +
1
6

fxxxa3
3 + fy f 2 fyyb21b2

32 + fx f fyya2b2
32+

fy f fxya3b21b32 + fx fxya2a3b32 + fyy f 2 fyb32c31


h3 +O

(
h4)

Substituting the result of k1, k2 and k3 into (4) and then equating the coefficients of
powers of h up to h3 with that of (3), one obtains the following conditions:

b1 +b2 +b3 = 1 a2b3b32 =
1
6

a2b2 +a3b3 =
1
2

1
2
(
a2

2b2 +a2
3b3
)
=

1
6

b2b21 +b3b31 +b3b32 =
1
2

a2b2b21 +a3b3b31 +a3b3b32 =
1
3

b2c21 +b3c31 +b3b21b32 =
1
6

1
2
(
b2b2

21 +b3b2
31 +b3b2

32
)
+b3b31b32 =

1
6

This is a non-linear system of 8 equations and 10 unknowns which we have solved
using MATLAB R2017a to obtain one of its optimal solutions which then formed the
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following third order numerical scheme:

k1 = f (xn,yn) ,

k2 = f
(

xn +
2
3

h,yn +
2
3

hk1 +
1
4

h2k1 fy

)
,

k3 = f
(

xn +
2
3

h,yn−
(

1
12

k1−
3
4

k2

)
h− 5

16
h2k1 fy

)
,

yn+1 = yn +
1
12

h(3k1 +5k2 +4k3)

(5)

This is the proposed numerical scheme with third order accuracy.

3. Local truncation error analysis

In order to obtain the local truncation error of the proposed scheme, a usual func-
tional associated to the scheme has been considered and is given below:

L (z(x) ,h) = z(x+h)− yn+1

where z(x) is an arbitrary function defined along the integration interval [x0,xn] and
differentiable as many times as required. Having expanded it into the Taylor series
about x and collecting the terms in h, the local truncation error under local assumption
of the following form has been obtained that ensures at least third order accuracy of
the proposed scheme:

Tn =

 − 1
48

f 3
y f − 1

72
fxx fy +

1
24

fx f 2
y +

1
72

fxxy f +
1

216
fyyy f 3

+
1
72

fxyy f 2 +
1
72

fxy fx +
1

216
fxxx−

1
72

fxy fy f +
1

72
fyy fx f

h4 +O
(
h5) (6)

4. Consistency analysis

Definition 4.1 Given an initial value problem y′(x) = f (xn,yn) ; y(x0) = y0; an itera-
tive scheme with an increment function Φ(xn,yn;h) is said to be consistent if

lim
h→0

Φ(xn,yn;h) = f (xn,yn)

The increment function of the proposed scheme (7) is shown as:

lim
h→0

Φ(xn,yn;h) =
1
12

lim
h→0

(3k1 +5k2 +4k3)

=
1
12

lim
h→0

 3 f (xn,yn)+5 f
(

xn +
2
3

h,yn +
2
3

hk1 +
1
4

h2k1 fy

)
+

4 f
(

xn +
2
3

h,yn−
(

1
12

k1−
3
4

k2

)
h− 5

16
h2k1 fy

)


= f (xn,yn)
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Thus, the proposed scheme is shown to be consistent with at least third order
accuracy.

5. Stability analysis

For a numerical scheme to be reliable, it is important for the scheme to be stable.
All this means is that the numerical error involved in the scheme should not grow
without bound either as the solution of the initial value problem progresses or the
step-size is decreased. In order to analyze the stability of the numerical scheme, one
has numerous options with testing of the scheme on the differential equation having
known exact well-defined solution being one of such options. Following the simple
initial value problem is the standard numerical experiment for the stability analysis

dy(x)
dx

= αy(x) , y(0) = y0, α ∈ C

where the real part of α should lie on the left half of the complex plane C.
Using slopes of the proposed scheme, one obtains

k1 = αyn,

k2 = αyn

[
1+

2
3

hα +
1
4

h2
α

2
]

,

k3 = αyn

[
1+

2
3

hα +
3
16

h2
α

2 +
3

16
h3

α
3
]

Now upon using the proposed scheme on the test problem, the stability function Θ(z)
has been found and the stability region (red) plotted in Figure 1.

ΘProposed (z) = 1+ z+
1
2

z2 +
1
6

z3 +
1
16

z4, where z = hα .

Fig. 1. Stability region of all three schemes with red for the proposed numerical scheme

In addition to this, the stability functions for third order Heun and Ralston schemes
considered for comparative analysis are available from the relevant literature [1] and
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it can easily be observed that the stability function for the proposed numerical scheme
goes to five-term approximation for the exponential function exp(z) with a minor
difference in the coefficient of the fifth term whereas rest of the two schemes to
four-term approximation as shown below:

ΘRalston, Heun (z) = 1+ z+
1
2

z2 +
1
6

z3, where z = hα .

Moreover, it may also be noted that the proposed numerical scheme is convergent
on the basis of being both stable and consistent as stated by the Dahlquist Equivalence
Theorem in [1].

6. Numerical experiments

We have selected as many as four initial value problems of different natures
(linear, nonlinear, autonomous and non-autonomous) in order to compare the effi-
ciency of the proposed scheme against two well-known standard numerical schemes
of third order accuracy, namely, Heun’s and Ralston’s schemes whose Butcher’s
tableau is given below. The performance of the new scheme has been checked
with respect to the CPU time (seconds), maximum absolute relative error Emax =

= maxa≤x≤b

∣∣∣y(xn)− yn

y(xn)

∣∣∣ and the absolute relative error found at the final grid point

E(x = b) =
∣∣∣y(b)− yx=b

y(b)

∣∣∣ of the integration interval used for the solution of initial

value problems under consideration. Furthermore, in order to test the third accuracy
of the proposed scheme for the selected initial value problems; these problems have
been numerically solved by the proposed scheme by decreasing one order of magni-
tude in the step-size and it is observed in the Table 5 that by doing so there is a drop
of three orders of magnitude in the maximum absolute relative error computed over
the corresponding integration interval thereby supporting the claim of third order
accuracy of the proposed scheme.

Heun
0 0 0 0
1/3 1/3 0 0
2/3 0 2/3 0

1/4 0 3/4

Ralston
0 0 0 0
1/2 1/2 0 0
1 –1 2 0

1/6 2/3 1/6

Problem 1.
dy
dx

= 10xy(x); y(0) = 1, 0≤ x≤ 1.

Analytical Solution: y(x) = exp(5x2).

Problem 2.
dy
dx

= xy(x)2− y(x); y(0) = 1, 0≤ x≤ 1.

Analytical Solution: y(x) =
1

x+1
.

Problem 3.
dy
dx

= 1+
5y(x)
x+1

; y(0) = 1, 0≤ x≤ 2.
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Analytical Solution: y(x) =−1
4
− 1

4
x+

5
4
(1+ x)5.

Problem 4.
dy
dx

= y(x)2 sinh(x); y(0) = 1, 0≤ x≤ 1.

Analytical Solution: y(x) =− 1
(cosh(x)−2)

.

Table 1. CPU Times, Max. Absolute Relative Errors over [0,1] and Absolute Relative Errors at x = 1
for Problem 1 with h = 0.01

Scheme CPU Time Max. Error Last Error
New 8.9530e-03 2.6059e-05 2.6059e-05
Heun 4.0807e-03 1.0508e-04 1.0508e-04
Ralston 4.2522e-03 7.4192e-05 7.4192e-05

Table 2. CPU Times, Max. Absolute Relative Errors over [0,1] and Absolute Relative Errors at x = 1
for Problem 2 with h = 0.01

Scheme CPU Time Max. Error Last Error
New 6.9974e-04 2.4143e-08 2.4143e-08
Heun 5.0111e-04 7.0045e-08 7.0045e-08
Ralston 4.9688e-04 4.4909e-08 4.4909e-08

Table 3. CPU Times, Max. Absolute Relative Errors over [0,2] and Absolute Relative Errors at x = 2
for Problem 3 with h = 0.01

Scheme CPU Time Max. Error Last Error
New 5.9711e-04 4.8201e-06 4.8201e-06
Heun 2.5237e-04 5.3936e-06 5.3936e-06
Ralston 3.2723e-04 7.8033e-06 7.8033e-06

Table 4. CPU Times, Max. Absolute Relative Errors over [0,1] and Absolute Relative Errors at x = 1
for Problem 4 with h = 0.01

Scheme CPU Time Max. Error Last Error
New 2.8980e-04 1.3278e-07 6.4499e-08
Heun 1.1049e-04 3.0137e-06 3.0137e-06
Ralston 1.0203e-04 1.5386e-07 7.0364e-09

Table 5. A drop of three orders of magnitude in the maximum absolute relative error for every one
drop of magnitude in the step-size h over the corresponding integration interval for Problems 1-4 using

the proposed scheme

Problem\h 0.01 0.001 0.0001
1 1.3278e-07 1.2194e-10 1.8328e-13
2 2.4143e-08 2.4266e-11 6.4834e-14
3 4.8201e-06 4.9965e-09 5.1997e-12
4 2.6059e-05 3.0496e-08 3.0570e-11
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7. Results and discussions

The initial value problems originating from applied and computational mathemat-
ics can be dealt with using the new third order proposed scheme described in this
paper. Four problems of a different nature have been numerically solved by the
scheme and compared with two standard numerical schemes (Heun and Ralston)
taken from the relevant literature. It may be observed from the Tables 1-4 that the
maximum absolute relative error produced by the proposed scheme is about four-fold
and thrice smaller than Heun’s and Ralston’s schemes respectively in test problem 1
and for the rest of the problems, the proposed scheme follows nearly the same trend
while consuming almost a little large amount of time on average. In addition, the new
scheme has the behavior of decreasing errors with an increase in the number of inte-
gration steps, and a similar type of behavior can be depicted by the remaining four test
problems. Hence, it would be safe to claim that the new proposed scheme is superior
to Heun’s and Ralston’s third order schemes in terms of convergence. Not only this,
the new scheme may well be compared with any existing numerical scheme having
the same order of local accuracy as that of the proposed scheme itself.

8. Conclusions

In this paper, a new numerical scheme has been developed that uses three slopes
per integration step and maintains the third order accuracy as shown above using the
idea of a local truncation error in terms of Taylor series expansion. The new scheme
is capable of solving initial value problems arising in various fields of science and
engineering. Derivation of the scheme is followed by its error analysis, consistency
and stability wherein it shows overall satisfactory performance. The stability region
shown by Figure 1 reveals that the new scheme is conditionally stable like every other
existing linear explicit numerical scheme in the relevant literature. The test prob-
lems under consideration have well been solved by the new scheme and by other two
schemes having same order of accuracy where it is easy to observe from above tables
that the new scheme produces smaller errors whether it be a maximum absolute rela-
tive error or the absolute relative error computed at the last grid point of the associated
interval of integration. Thus, the new proposed scheme can reliably be employed to
solve initial value problems in ordinary differential equations in replacement of any
other existing third order linear explicit numerical scheme.
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