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Abstract. In the current work, we investigate a technique based on discontinuous Galerkin
method for the numerical approximation of semi-differential equations with Caputo’s
fractional derivative. In this approach, using the natural upwind fluxes enables us to solve
the model problem element by element locally in each subintervals and there is no need
to solve a full global matrix. Numerical experiments are given to verify the efficiency and
accuracy of the proposed method. Numerical solutions are compared with the exact solutions
as well as the numerical solutions obtained by other available well-established computational
procedures. The results show that the LDG method is more accurate for solving this class of
differential equation with relatively low degrees of polynomials and number of elements.
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1. Introduction

Recent years have seen a growing interest in fractional differential equations due
to their numerous applications, specially in the modelling of complex systems in
numerous physical phenomena in science and engineering [1, 2]. Indeed, in mod-
elling many real world problems fractional-order models can provide a more realistic
insight than integer-order models. This is because of the fact that fractional deriva-
tives and integrals enable the description of the memory properties of various mate-
rials and processes.

The goal of this paper is to develop the local discontinuous Galerkin method for
the so-called semi-differential equations of order n ∈ N, see [2–6]. They have the
following form[

D
n
2 + cn−1 D

n−1
2 + . . .+ c0 D0]y(t) = f (t), t ∈ΩT := [0,T ], (1a)

where c0, . . . ,cn−1 are real constants and f (t) : ΩT → R is a given function.
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The equation is subjected to the following initial conditions

y(0) = ω0, y′(0) = ω1, . . . y(m−1)(0) = ωm−1, m−1 <
n
2
≤ m, (1b)

where ω0,ω1, . . . ,ωm−1 are given real numbers. Here, Dm is the usual integer dif-
ferential operator of order m, Dα denotes the standard Caputo fractional derivative
operator of order α /∈ N and defined

Dα y(t) = Jm−αDm y(t), m−1 < α < m, m ∈ N, (2)

where Jα is the Riemann-Liouville fractional integral operator of order α > 0 and is
defined as

Jα(t) =
1

Γ(α)

∫ t

0

y(s)
(t− s)1−α

ds, t > 0,

and Γ(·) is the well-known Gamma function. In [2, 7], the problem of existence
and the uniqueness of the fractional differential equations (1a) subjected to initial
conditions is investigated. The study of initial-value problem (1a)-(1b) has now been
considered via different models that naturally appear in an increasing number of prob-
lems of fluid mechanics. Among others, we emphasize the single degree-of-freedom
spring-mass-damper system whose dynamics is described by the following fractional
differential equation [5, 8][

mD2 + cD
1
2 + k D0]y(t) = f (t), (3)

where m, c, and k represent the mass, damping coefficient, and stiffness, respectively,
f (t) is the externally applied force, and y(t) is the displacement. Another example is
the Bagely-Torvik equation has the form [9, 10][

mD2 +2A
√

ρ µ D
3
2 + k D0]y(t) = f (t), (4)

which describes the motion of an immersed plate bounded in a Newtonian fluid.
Here, the function y(t) describes the displacement of the plate of mass m, A denotes
the surface area of the plate, and µ and ρ are the viscosity and density of the fluid in
which the plate is immersed. Moreover, k is the stiffness of the spring to which the
plate is attached and f (t) is a known function representing the external force.

Several numerical and (semi-) analytical techniques are examined for solving the
initial-value problem (1a)-(1b). A survey of some of these methods is given in the
book [2]. In [6] and [5] a scheme based on the collocation spline procedure is pro-
posed to treat semi-differential equations numerically. In [4], He’s variational iter-
ation method (VIM) is applied to solve nth order semi-differential equations. Also
homotopy analysis method (HAM) is directly extended to investigate (1a) in [3] and
Adomian decomposition method is proposed in [11] for (4). On the other hand,
numerous attempts have been made to obtain the numerical solutions of (3) and (4).
Among other, we mention the references [8] and [12–17], to name but a few.
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It is mentioned in [3, 4] that the main disadvantage of the presented methods
in [6] and [5] is the complex and difficult procedure. Since then in order to overcome
the demerit, they applied the methods VIM and HAM to solve semi-differential equa-
tions of nth order. In this article, a different approach for the numerical solution of
semi-differential equations is investigated. We use the local discontinuous Galerkin
(LDG) method accurately to discretize (1a). The main idea of the LDG scheme
is to rewrite a given fractional-order differential equation as a system of first-order
classical ODEs and a fractional integral, then apply the discontinuous Galerkin (DG)
method on the system and the fractional integral. The LDG methods for the fractional
ODEs including one-term and multi-terms were first discussed in [18]. A key ingre-
dient for the success of LDG schemes is the correct design of interface numerical
fluxes.

This paper is structured as follows. In Section 2, the main idea of the LDG scheme
for the semi-differential equations with initial conditions is presented. In computa-
tional Section 3, the accuracy of the proposed algorithm is verified by means of illus-
trative examples. Comparison of results obtained by using the LDG with the exact
solutions and other well-established methods are also reported in this section. Finally,
some conclusions are given in Section 4.

2. The basic idea of LDG

Our goal is here to formulate the LDG method for the initial value problems (1a).
Assume that n≥ 4 for convenience. For this purpose, by the aid of (2) and introducing
new variables

y0(t) = y(t), y1(t) = Dy(t), y2(t) = D2y(t), · · · ym(t) = Dmy(t),

we convert (1) into the following first-order system

y1(t)−Dy0(t) = 0,

y2(t)−Dy1(t) = 0,
...

ym(t)−Dym−1(t) = 0,

ym(t)+
(
cn−1 J(

1
2 )+ cn−2

)
ym−1(t)+ · · ·+

(
c1 D

1
2 + c0

)
y0(t) = f (t).

(5)

Note that in the last equation in (5), we have used the fact that n is even, otherwise,
this equation needs to be modified slightly. For instance, if n = 4 is selected the last
equation becomes

y2(t)+
(
c3 J(

1
2 )+ c2

)
y1(t)+(c1 D

1
2 + c0)y0(t) = f (t),
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while using n = 5 we arrive at(
J(

1
2 )+ c4

)
y2(t)+

(
c3 J(

1
2 )+ c2

)
y1(t)+(c1 D

1
2 + c0)y0(t) = f (t).

Applying the initial conditions (1b), the system (5) is subjected to the following con-
ditions

y0(0)−ω0 = 0, y1(0)−ω1 = 0, · · · ym−1(0)−ωm−1 = 0. (6)

To proceed, assume that M is a positive integer and let Π be a partitioning of ΩT

into M subintervals Π :=
{

K j = (t j−1, t j)
}M

j=1 with nodes

0 =: t0 < t1 < · · ·< tM−1 < tM := T.

Let ∆t j = t j−t j−1 for j = 1,2, . . . ,M be the length of each K j and set ∆t :=max{∆t j}M
j=1.

Next, we introduce the Sobolev spaces correspond to the partitioning Π as follows

W (ΩT ,Π) = {v : ΩT → R
∣∣ v|K j ∈ L2(K j), j = 1,2, . . . ,M},

and

H (ΩT ,Π) = {v : ΩT → R
∣∣ v|K j ∈ H1(K j), j = 1,2, . . . ,M},

where L2 denotes the usual space of square integrable functions and H1 is the usual
Sobolev space of order one. Now, we assume that the solutions belong to cor-
responding spaces such that yi(t) ∈ H (ΩT ,Π) for i = 0,1, . . . ,m− 1 except that
ym(t) ∈W (ΩT ,Π).

We now define Pp(K j) as the space of polynomials of degree less than or equal to
p on K j for any given polynomial degree p≥ 0 and an element K j ∈Π. We restrict our
approximate solutions to be in a local finite dimensional subspace V (p)⊂H (ΩT ,Π).
Now, we choose V (p) to be the space of discontinuous, piecewise polynomial func-
tions defined by

V (p) = {v : ΩT → R : v|K j ∈Pp(K j), j = 1,2, . . . ,M}.

Since a function v ∈ V (p) is allowed to be discontinuous in t at time level t j, we let
v−j and v+j denote the left and right-sided limits of v at t j

v+j = v+(t j) = v(t+j ) := lim
s→0+

v(t j + s), v−j = v−(t j) = v(t−j ) := lim
t→0−

v(t j + s).

On the element K j we use the quantities Yi(t) ∈ V (p) for i = 0,1, . . . ,m represent
the computed DG approximations to the exact solutions yi(t) respectively of the sys-
tem (5). To obtain the weak DG formulation for (5), we multiply the first m equations
by test functions vi ∈ V (p), i = 0,1, . . . ,m−1 follow by integrating over K j and then
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integrating by parts to obtain that∫
K j

Yi+1(t)vi(t)dt +
∫

K j

Yi(t)
dvi(t)

dt
dt−Yi(t−j )vi(t−j )+Yi(t+j−1)vi(t+j−1) = 0, (7)

for i = 0,1, . . . ,m− 1. We then multiply the last equation in (5) by a test function
vm ∈ V (p) and integrate over K j. To solve the equations forward in time, we utilize
the upwind flux Yi(t−j−1) instead of Yi(t+j−1) for i = 0,1, . . . ,m in (7). Putting all
together, the discrete formulation consists of determining Yi(t) ∈ V (p) such that for
all vi(t) ∈ V (p) for i = 0,1, . . . ,m becomes∫

K j

Y1(t)v0(t)dt +
∫

K j

Y0(t)
dv0(t)

dt
dt−Y0(t−j )v0(t−j )+Y0(t−j−1)v0(t+j−1) = 0,∫

K j

Y2(t)v1(t)dt +
∫

K j

Y1(t)
dv1(t)

dt
dt−Y1(t−j )v1(t−j )+Y1(t−j−1)v1(t+j−1) = 0,

...∫
K j

Ym(t)vm−1(t)dt +
∫

K j

Ym−1(t)
dvm−1(t)

dt
dt−Ym−1(t−j )vm−1(t−j )

+Ym−1(t−j−1)vm−1(t+j−1) = 0,

and ∫
K j

Ym(t)vm(t)dt + cn−1

∫
K j

(
J(

1
2 )Ym−1(t)

)
vm(t)dt + cn

∫
K j

Ym−1(t)vm(t)dt

+ · · ·+ c1

∫
K j

(
D

1
2 Y0(t)

)
vm(t)dt + c0

∫
K j

Y0(t)vm(t)dt =
∫

K j

f (t)v2(t)dt,

for all j = 1,2, . . . ,M. These equations are also accompanied by the following initial
conditions

Y0(t−0 )−ω0 = 0, Y1(t−0 )−ω1 = 0, · · · Ym−1(t−0 )−ωm−1 = 0.

Although, on the initial step K1 = (t0, t1) we will use the above given initial con-
ditions, however, on the K j for j ≥ 2 the values of Yi(t−j−1), i = 0,1, . . . ,m− 1 will
be extrapolated from the previous element K j−1. We also emphasize that using the
upwind fluxes as natural choices enable us to solve the equation interval by interval
on each subinterval K j for j = 1,2, . . . ,M. This implies that we just invert a local
low-order (p+1)× (p+1) matrix rather than a global full matrix.

Due to the fact that the functions in V (p) are allowed to have discontinuities across
element interfaces, one can exploit various local basis for finite element approxi-
mation, see [19] for practical implementation. Below, to implement the above LDG
scheme, in the numerical experiments we use the Legendre polynomials as a basis for
the space V (p). Utilizing this special orthogonal basis functions, our discrete LDG
scheme will be transformed to a linear system of algebraic equations.
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3. Applications

In this section, we present some results of computations using the proposed LDG
schemes described in the preceding sections to test their accuracy and efficiency when
applied to the semi-differential equations. To measure the accuracy of the numerical
algorithms, we compute the difference between the analytic and numerical solutions.
We also compare our results with existing computational procedures available in the
standard literature.

Example 1 As the first example, we use n = 4 in (1a) with c3 = c2 = 0, c1 = 1/2,
and c0 = 1 to get

[
D2 +

1
2

D
1
2 +D0]y(t) = 3+ t2 +

t
3
2

Γ(5
2)

+
t
−1
2

2Γ(1
2)
, 0 < t ≤ 1. (8)

The initial conditions are given as y(0) = 1 and y′(0) = 0. It can be easily verified that
y(t) = 1+ t2 is the exact solution of (8). This equation is known as Bagley-Torvik
equation of frational order “1/2” taken from [13]. 2

The numerical solution for this example while using p= 2 and M = 1 are depicted
in Figure 1, left plot. The corresponding exact solution is plotted by solid line while
the numerical solution is visualized by (coloured) curve. Note that the time step is
equal to ∆t = 1. On the same figure but right plot, the corresponding absolute error is
shown. It can be seen from Figure 1 that the numerical solution obtained by the LDG
method is in excellent agreement with the exact solution and hardly to distinguishable
from each other. To see the behaviour of numerical solution more closely, we magnify
these solutions at time t = 0.630 in Figure 1.
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Fig. 1. Comparing the approximated LDG and exact solutions (left) and the corresponding absolute
error (right) for M = 1, p = 2

Indeed, the approximated analytical solution Y0(t) obtained by the LDG in
Figure 1 for p = 1 and M = 1 on the interval (0,1] takes the form Y0(t) = 1.0+ t2,
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which is the exact solution. Meanwhile, the corresponding approximations for the first
and the second derivatives of the solution are also obtainable. In this case, we find
that

Y1(t) =−5.3291×10−15 t2 +2.00000000000001 t−8.8818×10−16,

Y2(t) =−6.5281×10−14 t2 +6.8390×10−14 t +1.99999999999999.

Clearly, for this example we have y′(t) = 2t and y′′(t) = 2.
To show further the benefit of the proposed method and to validate our numerical

solutions, we make a comparison in Table 1 between the LDG for different M = 1,2,3
and the reproducing kernel algorithm (RKA) [13].

Table 1. Comparison of absolute errors for Y0(t) in Example (1) for M = 1,2,3, p = 2

M = 1 M = 2 M = 3 RKA

t Exact Numerical Error Numerical Error Numerical Error Error

0.0 1.00 1.00 0 1.00 0 1.00 0 0
0.1 1.01 1.01 8.27×10−27 1.01 8.27×10−27 1.01 8.27×10−27 1.93×10−12

0.2 1.04 1.04 3.31×10−26 1.04 3.31×10−26 1.04 3.31×10−26 3.16×10−11

0.3 1.09 1.09 1.32×10−25 1.09 1.32×10−25 1.09 1.32×10−25 3.68×10−10

0.4 1.16 1.16 1.32×10−25 1.16 1.32×10−25 1.16 6.75×10−18 3.66×10−09

0.5 1.25 1.25 0 1.25 0 1.25 1.58×10−17 3.30×10−09

0.6 1.36 1.36 5.29×10−25 1.36 5.58×10−18 1.36 1.54×10−17 2.75×10−09

0.7 1.49 1.49 1.85×10−24 1.49 7.70×10−17 1.49 1.85×10−16 2.10×10−10

0.8 1.64 1.64 5.29×10−25 1.64 1.90×10−16 1.64 2.35×10−16 1.40×10−11

0.9 1.81 1.81 2.12×10−24 1.81 3.45×10−16 1.81 2.47×10−16 7.00×10−12

1.0 2.00 2.00 0 2.00 5.41×10−16 2.00 2.20×10−16 0

Example 2 As the second example, we consider the following equation [3, 4, 6][
D2−2D+D

1
2 +D0]y(t) = t3 +

16
5Γ(1

2)
t

5
2 −6t2 +6t. (9)

This equation is subjected with the initial conditions y(0) = 0 and y′(0) = 0 and the
computational domain is again the interval [0,1]. It is not a difficult task to show that
y(t) = t3 is the exact solution of (9). 2

First, we use the step-size ∆t = 1 and the degree of polynomial is p = 3. In Ta-
ble 2, we present the exact results correspond to y(t) and its numerical approxima-
tion Y0(t) for various points t = 0,0.1, . . . ,0.9,1 obtained by the LDG scheme while
using different values of M = 1,2. To measure the high accuracy of the method,
the absolute errors as well as the relative errors are calculated in this table. Clearly,
using only M = 1 and M = 2 intervals, the desired accuracy is achieved and one
observes an excellent agreement between the exact and numerical solutions.
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Table 2. Comparison of numerical solutions, absolute, and relative errors for Y0(t) in Example (2) for
M = 1,2 and p = 3

Numerical Absolute errors Relative errors

t M = 1 M = 2 M = 1 M = 2 M = 1 M = 2 Exact

0.0 0.000 0.000 0 0 − − 0.000
0.1 0.001 0.001 0 0 0 0 0.001
0.2 0.008 0.008 0 0 0 0 0.008
0.3 0.027 0.027 0 0 0 0 0.027
0.4 0.064 0.064 0 0 0 0 0.064
0.5 0.125 0.125 0 0 0 0 0.125
0.6 0.216 0.216 0 1.03×10−15 0 4.79×10−15 0.216
0.7 0.343 0.343 0 8.70×10−16 0 2.54×10−15 0.343
0.8 0.512 0.512 0 2.17×10−16 0 4.23×10−16 0.512
0.9 0.729 0.729 0 5.29×10−16 0 7.25×10−16 0.729
1.0 1.000 1.000 0 9.67×10−16 0 9.67×10−16 1.000

To further justify the results shown in Table 2, we compute the approximate solu-
tions of the problem in each subinterval. In the LDG scheme we are able to find not
only Y0(t), but also its first and second derivatives Y1(t) and Y2(t) during computa-
tions. Using M = 1 and p = 3, we find that

Y0(t) = t3,

Y1(t) = 9.3814×10−14 t3 +2.99999999999986 t2 +5.6288×10−14 t−6.9222×10−14,

Y2(t) = 1.3300×10−12 t3−2.0114×10−12 t2 +6.00000000000081 t−6.9222×10−14.

Similarly, if one utilizes M = 2 with the same p as above, we arrive at for t ∈ K0

Y0(t) = t3,

Y1(t) =−9.9920×10−15 t3 +3.00000000000001 t2−1.4988×10−15 t +6.2450×10−17,

Y2(t) = 1.4655×10−12 t3−1.2836×10−12 t2 +6.00000000000031 t−1.6848×10−14,

and for t ∈ K1

Y0(t) = 1.00000000000007 t3−1.6393×10−13 t2 +1.2713×10−13 t−3.0574×10−14,

Y1(t) =−6.9602×10−13 t3 +3.00000000000184 t2−1.5956×10−12 t +4.4780×10−13,

Y2(t) =−5.1549×10−11 t3 +1.1942×10−10 t2 +5.99999999990979 t +2.2154×10−11.



Application of LDG scheme to solve semi-differential equations 35

Obviously, all approximated analytical solutions using step ∆t = 0.2 are perfectly
aligned with the corresponding exact solutions up to machine epsilon.

Next, we verify the high accuracy of the proposed LDG method compared to
existing numerical methods in standard litrature. For this purpose, we exploit the
analogous results of [4] for the underlying He’s variational iteration method (HVIM)
and the homotopy perturbation method (HPM) as well as homotopy analysis method
(HAM) from [3]. In this comparison, we present the absolute errors |y(t)−Y0(t)| at
different t ∈ [0,1] as shown in Table 3. In our LDG method we take p = 3. A similar
comparison for |y′(t)−Y1(t)| and |y′′(t)−Y2(t)| is made in Table 4.

Table 3. Comparison of absolute errors for Y0(t) in Example (2) for M = 1,2,3, and p = 3

LDG

t M = 1 M = 2 M = 3 HVIM HAM HPM

0.1 0 0 0 0.254373331×10−4 3.5997×10−13 2.5435×10−16

0.2 0 0 0 0.413093948×10−3 1.5021×10−12 4.2573×10−13

0.3 0 0 0 0.211853620×10−2 9.6606×10−12 3.1145×10−11

0.4 0 0 1.16×10−15 0.677080535×10−2 2.9515×10−11 6.3416×10−10

0.5 0 0 1.37×10−16 0.166874021×10−1 4.1907×10−11 6.4131×10−09

0.6 0 1.03×10−15 3.00×10−16 0.348739983×10−1 3.3163×10−10 4.1671×10−08

0.7 0 8.70×10−16 6.25×10−15 0.650089365×10−1 5.0078×10−10 1.9955×10−07

0.8 0 2.17×10−16 1.23×10−16 0.111412924×10+0 2.0880×10−09 7.6424×10−07

0.9 0 5.29×10−16 3.96×10−15 0.179004637×10+0 8.0036×10−09 2.4674×10−06

1.0 0 9.67×10−16 9.79×10−16 0.273243226×10+0 4.4094×10−09 6.9604×10−06

Table 4. Comparison of absolute errors for Y1(t) and Y2(t) in Example (2) for various M = 1,2,3, and
p = 3

|Y1(t)− y′(t)| |Y2(t)− y′′(t)|

t M = 1 M = 2 M = 3 M = 1 M = 2 M = 3

0.0 4.6907×10−15 6.2450×10−17 2.4546×10−16 7.3996×10−14 1.6182×10−14 1.3769×10−14

0.1 3.7525×10−16 2.2482×10−17 1.0800×10−16 7.2381×10−15 2.7778×10−15 5.8054×10−15

0.2 1.6886×10−15 1.7486×10−17 6.8730×10−17 2.5251×10−14 5.7498×10−15 2.8441×10−15

0.3 2.0639×10−15 1.7486×10−17 1.9637×10−17 3.1934×10−14 9.5479×10−16 3.4318×10−16

0.4 1.3133×10−15 2.2482×10−17 6.5481×10−15 2.1274×10−14 3.3873×10−15 5.2749×10−13

0.5 0 6.2450×10−17 1.6369×10−14 1.7347×10−15 9.4369×10−16 5.9212×10−14

0.6 1.3134×10−15 2.4326×10−15 1.1795×10−14 1.8221×10−14 1.1743×10−13 5.4146×10−13

0.7 2.0639×10−15 6.3453×10−15 8.5580×10−14 3.0130×10−14 1.6083×10−13 5.0655×10−13

0.8 1.6886×10−15 7.5595×10−15 1.1680×10−13 2.5528×10−14 1.9120×10−14 1.8974×10−12

0.9 3.7526×10−16 5.3862×10−15 2.1526×10−14 4.0462×10−15 1.1312×10−13 2.8887×10−12

1.0 4.6907×10−15 4.0014×10−15 7.7506×10−15 6.7057×10−14 1.8812×10−13 6.6132×10−12

It can be observed from Tables 3 and 4 that using a small number of subintervals
and a low degree of polynomial is sufficient to get the desired exact solutions not only
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for y(t) itself, but also for y′(t) and y′′(t). From Table 3, we can see that the absolute
errors given in this paper have higher accuracy than the other results obtained by the
well-established methods, i.e., HVIM, HAM, and HPM. This shows the thoroughness
of the proposed method.

Example 3 As the last example arises in application, we consider the Bagley-Torvik
equation of order “3/2” of the form [3, 4, 6]

[
D2 +D

3
2 +D0]y(t) = 2+4

√
t
π
+ t2,

on the computational domain [0,1] with zero initial conditions y(0) = 0,y′(0) = 0.
The exact solution of this fractional initial-value problem takes the form y(t) = t2. 2

Figure 2 visualizes the numerical solutions as well as the corresponding absolute
errors for the approximated solutions Y0(t),Y1(t), and Y2(t) in Example (3). In these
plots we take ∆t = 1 and the degree of polynomial is p = 2.
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Fig. 2. Comparison of numerical and exact solutions for Y0(t),Y1(t)Y2(t) (left) and the corresponding
absolute errors (right) using M = 2 and p = 3

Notice in Figure 2, right plot that the plot of |y(t)−Y0(t)| is omitted due to the fact
that difference between the approximated and exact solutions are really zero and it is
not possible to depict in log-scale. Indeed, for M = 1 and p = 2 we obtain

Y0(t) = t2, Y1(t) = 9.9920×10−16 t2 +2.0 t +1.6653×10−16,

Y2(t) = 3.6970×10−14 t2−4.3077×10−14 t +2.00000000000001,

which further justify the validation of the plotted curves in Figure 2.
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In the next simulation, we examine the behaviour of absolute errors when using
more than one subintervals. Figure 3 shows the absolute errors for two different val-
ues of M = 1 and M = 2. In both cases we utilize p = 2. Note that in the first intervals
I0 the approximated and exact solutions for both M are exactly the same and there-
fore the absolute errors in these intervals are completely zero. This is the reason why
we could not show the errors in log-scale format. Finally, we make a comparison
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Fig. 3. Comparison of absolute errors in LDG for Example (3) with M = 2,3, and p = 2

between our results and some of the previously published works available in litera-
ture for this example. Analogue comparison as for Example 2 is done here with the
schemes HVIM, HAM, HPM. The results for various M and different t ∈ [0,1] are
reported in Table 5. However, we use p = 2 here.

Table 5. Comparison of absolute errors for Y0(t) in Example (3) for M = 1,2,3, and p = 2

LDG

t M = 1 M = 2 M = 3 HVIM HAM HPM

0.1 0 0 0 0.5487432×10−4 2.3265×10−13 4.0215×10−11

0.2 0 0 0 0.63125562×10−3 1.4385×10−11 5.2739×10−09

0.3 0 0 0 0.266557142×10−2 6.1890×10−11 9.2959×10−08

0.4 0 0 8.07×10−17 0.74801219×10−2 2.2736×10−11 7.2230×10−07

0.5 0 0 1.36×10−16 0.167959208×10−1 1.3680×10−10 3.5881×10−06

0.6 0 1.58×10−16 2.05×10−16 0.327730722×10−1 3.5678×10−11 1.3445×10−05

0.7 0 2.65×10−16 2.09×10−16 0.580653520×10−1 2.6188×10−10 4.1497×10−05

0.8 0 3.20×10−16 7.30×10−16 0.958850823×10−1 4.3416×10−10 1.1118×10−04

0.9 0 3.25×10−16 1.34×10−15 0.150076845×10+0 1.0816×10−10 2.6745×10−04

1.0 0 2.78×10−16 2.05×10−15 0.225199500×10+0 7.9195×10−10 5.9110×10−04
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4. Conclusions

In this paper, the LDG method as an efficient and accurate approximation tech-
nique has been adopted for solving semi-differential equations. Using the natural
upwind fluxes and a special basis functions the problem reduced to a local low-order
system of algebraic equation in each subinterval. Three illustrative examples are
provided to demonstrate the validity and applicability of the method presented. Com-
parison with well-established computational procedures show that the LDG method
produces an accurate approximation for the solution as well as its derivatives.
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