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Abstract. In this paper, numerical solutions are obtained for steady free convective flow in
a rectangular region with discrete wall heat and concentration sources by using the finite
volume method. The governing equations consist of the continuity, momentum, energy
and mass transfer. These equations conjointly with suitable boundary conditions are solved
numerically by using this method. The novel concept in this work is to generalize the
SIMPLE algorithm suitably and thereby compute the numerical solutions of the flow vari-
ables such as the temperature (θ ) and the concentration (C) in addition to the components of
velocity and the pressure. All non-dimensional parameters are chosen suitably in accordance
with the physical significance of the problem under investigation. With the help of these
numerical solutions, we have depicted the profiles of the velocity, pressure, temperature
and concentration along the horizontal and vertical directions of the geometric centre of
the region. The validity of the numerical solutions are ensured by comparing the present
solutions with the benchmark solutions. Code validation has been given for the present
problem.
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1. Introduction

Free convection in a rectangular region due to heat sources placed on its walls
is attaining immense significance in the present era’s research. The reason for this
significance is due to numerous industrial applications of free convection in a rectan-
gular region such as in furnaces, cooling towers, electronic cooling systems et cetera.

A normal time advancing method for evaluation of flow fields of a regular fluid
flow problem was deliberated by Patankar and Spalding [1]. Ghia et al. [2] have
recommended benchmark solutions for a 2D incompressible flow in a square cavity
by using the multigrid method. The benchmark solution for free convective flow of
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air in a square cavity was studied by Davis [3]. Bejan [4] investigated heat and mass
transfer of a free convective flow under buoyancy effects in a rectangular enclosure.
Trevisan and Bejan [5] have investigated the heat and mass transfer effects due to
free convective flow in a vertical enclosure. Temperature and concentration effects of
a free convective flow in a rectangular enclosure was investigated by Phanikumar [6].

Chamkha and Naser [7, 8] have studied numerically the unsteady and hydromag-
netic double-diffusive convective flow in a rectangular enclosure through a porous
medium in the presence of temperature and concentration gradients. Nakhi and
Chamkha [9–11] have presented a steady and conjugate incompressible free con-
vective flow in an inclined partitioned enclosure and thin fin with arbitrary lengths.
Combined buoyancy effects of thermal and mass diffusion of a mixed convective flow
in a rectangular enclosure was studied by Teamah and Maghlany [12]. Sathyamoor-
thy and Chamkha [13] have investigated the free convective flow in a square cavity
due to the magnetic field effect. Kuznetsov and Sheremed [14] have reported numer-
ical simulations of double diffusive free convective flow in an enclosure. Ozotop et
al. [15] have investigated numerically the free convective flow with heated vertical
wall temperature in a wavy enclosure. The free convective flow in a rectangular cav-
ity with thermally active discrete side wall was investigated numerically by Nikbakti
and Rahimi [16]. Qin et al. [17] have reported high accurate numerical solutions in
a rectangular enclosure with heat and concentration sources. The problem of steady
laminar mixed convective flow in both square and triangular cavity which is filled
with water was studied by Ismael et al. [18]. Double-diffusive free convective flow
in an open square cavity with partial heating effects was performed numerically by
Arbin et al. [19].

A literature survey revealed that there is a significant need for accurate the numer-
ical solutions of the flow variables associated with free convection due to heat and
concentration sources placed on the walls of a rectangular region. However, there is
a complexity involved in this problem such as the governing equations are a system
of coupled quasi-linear partial differential equations conjoined with boundary con-
ditions. Therefore, in the present work, we have attempted to obtain the accurate
numerical solutions of the flow variables by using the upwind finite volume scheme.

The novelty in this current investigation is apparent from the generalization of the
SIMPLE algorithm so as to compute the numerical solutions of the new flow vari-
ables such as the temperature (θ ) and the concentration (C). The original SIMPLE
algorithm solves the flow variables such as the components of velocity and pressure
but, due to inserting discrete heat and concentration sources on the wall of the rect-
angle, there is a need to compute the numerical solutions of the temperature (θ ) and
the concentration (C). Consequently, there is a need to generalized the discretization
equations for the temperature (θ ) and the concentration (C) variables and finally we
compute their numerical solutions with the help of this generalized SIMPLE algo-
rithm.

The main objective of this study is to discretize the governing quasi-linear partial
differential equations by using the upwind finite volume scheme. We compute the
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numerical solutions of the flow variables by using the SIMPLE algorithm. We com-
pare the numerical solutions obtained in this study with the benchmark solutions
available in the literature. Hence, we conclude that our numerical solutions are accu-
rate and realistic.

2. Formulation of the problem

2.1. Description

The description of free convective flow in a rectangular region with discrete heat
and concentration sources on its walls is given in Figure 1. ABCD is a rectangular
region of length L and height H in which free convective flow is considered [20]. We
have assumed that the top wall is moving towards right direction while other three
walls are stationary. Therefore, no-slip boundary conditions for velocity are defined
on these walls. A discrete heat and a concentration source is placed on the bottom
wall of the rectangular region [20]. We have assumed the bottom wall is hot and top
wall is cold. Therefore, the temperature and concentration on the bottom and the top
wall of the region θh, θc, Ch and Cc [20]. At all the corner points of the region, (u,v)
and P are assumed to be zero. Excluding the corner points, the boundary conditions
for velocity, temperature and concentration on all boundary walls of region ABCD
are defined as shown below.

Fig. 1. Diagram of physical problem

2.2. Governing equations

The governing equations of a free convective flow in a rectangular region with
heat and concentration effects are described by the continuity equation, momentum
equations in X and Y directions, the energy and mass transfer equations in dimen-
sional form are given as follows [20]:

continuity equation:
∂U
∂X

+
∂V
∂Y

= 0, (1)
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X-momentum equation: U
∂U
∂X

+V
∂U
∂Y

=− 1
ρ

∂ p
∂X

+ν

(
∂ 2U
∂X2 +

∂ 2U
∂Y 2

)
, (2)

Y -momentum equation: U
∂V
∂X

+V
∂V
∂Y

=− 1
ρ

∂ p
∂Y

+ν

(
∂ 2V
∂X2 +

∂ 2V
∂Y 2

)
+g[βT (T −Tc)+βc(c− cc)], (3)

energy equation: U
∂T
∂X

+V
∂T
∂Y

= α

(
∂ 2T
∂X2 +

∂ 2T
∂Y 2

)
, (4)

mass transfer equation: U
∂c
∂X

+V
∂c
∂Y

= D
(

∂ 2c
∂X2 +

∂ 2c
∂Y 2

)
. (5)

where U , V , P, ρ , T , g, βT , βc, α , c and D are the components of velocity along the X and Y
axis, pressure, density, temperature, gravitational acceleration, thermal expansion coefficient
of the fluid, solutal expansion coefficient of the fluid, thermal diffusivity, concentration and
mass diffusivity respectively.

Introducing the dimensionless variables as:

(x,y) =
(X ,Y )

L
,(u,v) =

(U,V )

u0
,P =

p
ρu2

0
,θ =

T −Tc

Th−Tc
,C =

c− cc

ch− cc
,Pr =

ν

α
,Sc =

ν

D
,

Re =
u0L
ν

, Ri =
Gr
Re2 , Gr =

gβT (Th−Tc)

γ2 L3, N =
βc(ch− cc)

βT (Th−Tc)
.

The dimensional boundary conditions for the governing equations (1)–(5) are:

on AB: at X = 0, U =V = 0,
∂T
∂X

=
∂c
∂X

= 0,

on DC: at X = H, U =V = 0,
∂T
∂X

=
∂c
∂X

= 0,

on BC: at Y = 0, U =V = 0, T = Th, c = ch,

on AD: at Y = L, U = u0, V = 0, T = Tc, c = cc.


(6)

After using the dimensionless variables, the dimensionless form of the governing equa-
tions (1)–(5) reduce to

continuity equation:
∂u
∂x

+
∂v
∂y

= 0, (7)

x-momentum equation: u
∂u
∂x

+ v
∂u
∂y

=−∂P
∂x

+
1

Re

(
∂ 2u
∂x2 +

∂ 2u
∂y2

)
, (8)

y-momentum equation: u
∂v
∂x

+ v
∂v
∂y

=−∂P
∂y

+
1

Re

(
∂ 2v
∂x2 +

∂ 2v
∂y2

)
+Ri(θ +NC), (9)

energy equation: u
∂θ

∂x
+ v

∂θ

∂y
=

1
RePr

(
∂ 2θ

∂x2 +
∂ 2θ

∂y2

)
, (10)

mass transfer equation: u
∂C
∂x

+ v
∂C
∂y

=
1

ReSc

(
∂ 2C
∂x2 +

∂ 2C
∂y2

)
, (11)

and the boundary conditions in dimensionless form are
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on AB: at x = 0, u = v = 0,
∂θ

∂x
=

∂C
∂x

= 0,

on DC: at x = 2, u = v = 0,
∂θ

∂x
=

∂C
∂x

= 0,

on BC: at y = 0, u = v = 0, θ = 1, C = 1,
on AD: at y = 1, u = 1, v = 0, θ = 0, C = 0.


(12)

where the dimensionless variables u, v, P, Re, Ri, N, θ , C, Pr and Sc are velocity components
along the x and y-axis, pressure, the Reynolds number, the Richardson number, the buoyancy
ratio, temperature, concentration, the Prandtl number and the Schmidt number respectively.

3. Numerical method

3.1. Discretization

We discretize the governing equations (7)-(11) by using the finite volume method under a
staggered grid arrangement as given in [21] which is described in the following Figure 2.

Fig. 2. Staggered grid arrangement

Continuity equation: The discretized continuity equation at location (I,J) of the scalar
control volume is given by [21]

Fe−Fw +Fn−Fs = 0 (13)

x-momentum: The discretized x-momentum equation at location (i,J) of the u-control
volume is given by [21]

ai,Jui,J = ∑anbunb +(PI−1,J−PI,J)Ai,J (14)

where Ai,J is the cell face area of u-control volume. E, W , N, S neighbors involved in the
summation ∑anbunb are (i+ 1,J), (i− 1,J), (i,J + 1) and (i,J− 1). The coefficients of the
upwind differencing scheme [21] are

ai,J = ai−1,J +ai+1,J +ai,J−1 +ai,J+1 +∆F (15)
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where

ai+1,J = DI,J +max(−FI,J ,0), ai−1,J = DI−1,J +max(FI−1,J ,0),
ai,J+1 = Di, j+1 +max(−Fi, j+1,0), ai,J−1 = Di, j +max(Fi, j,0),
∆F = (Fe−Fw)+(Fn−Fs) = (FI,J−FI−1,J)+(Fi, j+1−Fi, j)


For each of the faces e, w, n and s, we have

Fe = FI,J =
Fi+1,J +Fi,J

2
=

ui+1,JAi+1,J +ui,JAi,J

2

Fw = FI−1,J =
Fi,J +Fi−1,J

2
=

ui,JAi,J +ui−1,JAi−1,J

2

Fn = Fi, j+1 =
FI, j+1 +FI−1, j+1

2
=

vI, j+1AI, j+1 + vI−1, j+1AI−1, j+1

2

Fs = Fi, j =
FI, j +FI−1, j

2
=

vI, jAI, j + vI−1, jAI−1, j

2

De = DI,J =
AI,J

Re∆x
=

1
Re∆x

(
Ai+1,J +Ai,J

2

)
, Dw = DI−1,J =

AI−1,J

Re∆x
=

1
Re∆x

(
Ai,J +Ai−1,J

2

)
Dn = Di, j+1 =

Ai, j+1

Re∆y
=

1
Re∆y

(
AI, j+1 +AI−1, j+1

2

)
, Ds = Di, j =

Ai, j

Re∆y
=

1
Re∆y

(
AI, j +AI−1, j

2

)


y-momentum: The discretized y-momentum equation at (I, j) is given by [21]

aI, jvI, j = ∑anbvnb +(PI,J−1−PI,J)AI, j +bI, j (16)

where AI, j is the cell face area of v-control volume. The neighbours E, W , N and S involved
in the summation ∑anbvnb are (I +1, j), (I−1, j), (I, j+1) and (I, j−1).

Now the coefficients of the upwind differencing scheme are given [21] as follows:

aI, j = aI−1, j +aI+1, j +aI, j−1 +aI, j+1 +∆F−SI, j (17)

and
SI, jvI, j +bI, j = S̄∆v (18)

where

aI+1, j = Di+1, j +max(−Fi+1, j,0), aI−1, j = Di, j +max(Fi, j,0),
aI, j+1 = DI,J +max(−FI,J ,0), aI, j−1 = DI,J−1 +max(FI,J−1,0),
∆F = (Fe−Fw)+(Fn−Fs) = (Fi+1, j−Fi, j)+(FI,J−FI,J−1)


For v-control volume, the values of F and D for each of the faces e, w, n and s are defined

in a similar manner as in the previous case.
The pressure correction equation is given by [21]

aI,JP
′
I,J = aI+1,JP

′
I+1,J +aI−1,JP

′
I−1,J +aI,J+1P

′
I,J+1 +aI,J−1P

′
I,J−1 +b

′
I,J (19)

where
aI,J = aI+1,J +aI−1,J +aI,J+1 +aI,J−1
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and the coefficients are

aI+1,J = (dA)i+1,J , aI−1,J = (dA)i,J ,

aI,J+1 = (dA)I, j+1, aI,J−1 = (dA)I, j,

di,J =
Ai,J

ai,J
, dI, j =

AI, j

aI, j
, b

′
I,J = (u∗A)i,J− (u∗A)i+1,J +(v∗A)I, j− (v∗A)I, j+1

 (20)

The equation (20) represents the discretized continuity equation evaluated in terms of pres-
sure correction P

′
. There is a continuity imbalance in the source term b

′
in this equation due

to utilization of the guessed velocities u∗ and v∗.
Energy equation: The discretized energy equation at (I,J) is given by

aI,JθI,J = ∑anbθnb (21)

The coefficients of the upwind differencing scheme are

aI,J = aI+1,J +aI−1,J +aI,J+1 +aI,J−1 +∆F (22)

where

aI+1,J = Di+1,J +max(−Fi+1,J ,0), aI−1,J = Di,J +max(Fi,J ,0),
aI,J+1 = DI, j+1 +max(−FI, j+1,0), aI,J−1 = DI, j +max(FI, j,0),
∆F = (Fe−Fw)+(Fn−Fs) = (Fi+1,J−Fi,J)+(FI, j+1−FI, j)


and the values of F and D for each of the faces e, w, n and s are defined in a similar manner
as given above.
Mass transfer equation: The discretized mass transfer equation at (I,J) is given by

aI,JCI,J = ∑anbCnb (23)

The coefficients of the upwind differencing scheme are

aI,J = aI+1,J +aI−1,J +aI,J+1 +aI,J−1 +∆F (24)

where

aI+1,J = Di+1,J +max(−Fi+1,J ,0), aI−1,J = Di,J +max(Fi,J ,0),
aI,J+1 = DI, j+1 +max(−FI, j+1,0), aI,J−1 = DI, j +max(FI, j,0),
∆F = (Fe−Fw)+(Fn−Fs) = (Fi+1,J−Fi,J)+(FI, j+1−FI, j)


and the values of F and D for each of the faces e, w, n and s are defined in a similar manner
as above.

3.2. Numerical computations

In order to evaluate the numerical solutions of flow variables u, v, P, θ and C with relevant
parameters Re, Pr, Ri and N, we adopt the SIMPLE algorithm [1] that has been executed by
developing a code that runs on a C-compiler. The main steps of this algorithm are given as
follows:
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The SIMPLE Algorithm
The SIMPLE algorithm [1, 21] give a method of calculating pressure, velocities, temper-

ature and concentration in a iterative manner, which consists of the following steps:
Step 1: Start with guessed velocities (u∗,v∗) pressure fields P∗, temperature θ

∗ and con-
centration C∗.

Step 2: Calculate the coefficients in the momentum equation, solve discretized momen-
tum equations.

Step 3: Calculate the coefficients of pressure equation, solve pressure correction equa-
tions.

Step 4: Correct pressure and velocities:

PI,J = P∗I,J +P
′
I,J ,

ui,J = u∗i,J +di,J(P
′
I−1,J−P

′
I,J),

vI, j = v∗I, j +dI, j(P
′
I,J−1−P

′
I,J).

 (25)

Step 5: Solve temperature and concentration discretized equations.
Step 6: Replace the previous intermediate values of pressure, velocity, temperature and

concentration (P∗,u∗,v∗,θ ∗,C∗) with the corrected values (P,u,v,θ ,C), return to Step 2 and
repeat this process until the solution converges.

4. Discussion on results

In this work, we have investigated steady, free convective flow in a rectangular region
with heat and concentration sources using the upwind finite volume scheme. We have chosen
the values of different parameters involved in the governing equations such as the Reynolds
number, the Prandtl number, the Schmidt number, the Richardson number and the buoyancy
ratio and thereby computed u-velocity, v-velocity, pressure, temperature, concentration and
average Nusselt and Sherwood number. The numerical solutions of these flow variables are
evaluated by using this scheme with the SIMPLE algorithm. This algorithm helped us to write
a code that was executed on the C-compiler and thereby, we have obtained the numerical
solutions of the flow variables mentioned above.

Re=1000

Re=5000

Re=10000

Re=50000

-0.5 0.0 0.5
u

0.2

0.4

0.6

0.8

y

(a)

Re=1000

Re=5000

Re=10000

Re=50000

0.5 1.0 1.5
x

-0.4

-0.3

-0.2

-0.1

0.1

v

(b)
Fig. 3. (a) u-velocity and (b) v-velocity profiles for different Reynolds numbers

The numerical solutions of velocity in x-direction (u-velocity) along the vertical line
through the geometric centre (1,0.5) of the rectangular domain at different Reynolds num-
bers 1000, 5000, 10000, 50000, are computed and sketched in Figure 3a. It is observed from
this figure that, at Re = 1000, near the bottom wall, the u-velocity is found to be uniform.
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However, while moving in the upward direction of the geometric centre until the point y= 0.2,
it increases. From there onwards until the point y = 0.6, the u-velocity decreases gradually.
Furthermore, from the point y = 0.6 onwards until the top of the wall, the u-velocity is found
to be uniformly increasing. So, the intensity of u-velocity is observed to be more in the re-
gion near the top of the wall. At the top of the wall, it is observed that the u-velocity curves
for each of the high Reynolds numbers such as 1000,5000,10000,50000 converges and is
found to be uniform. The basis for this behaviour of the velocity is that a speed of u0 in the
positive x-direction is given on the top wall. Furthermore, the intensity of the u-velocity at the
bottom wall is uniform. However, this behaviour is due to the fact that a heat source whose
temperature Th is placed on the bottom wall.

Similarly, by using the numerical solutions obtained for v-velocity at different Reynolds
numbers 1000,5000,10000,50000, we have illustrated these values as velocity in the
y-direction (v-velocity) of the fluid along the horizontal line through the geometric cen-
tre (1,0.5) of the rectangular domain in Figure 3b. It is observed from this Figure that at
Re = 1000, while moving in the horizontal direction from the left wall until the geometric
centre, the v-velocity increases and reaches its maximum value at the geometric center and,
from there onwards, it decreases gradually by cutting the line y= 0.5 and from there onwards,
the v-velocity decreases steadily by attaining the lowest value near the right wall. Similarly,
for each of the Reynolds numbers 5000,10000,50000, while moving in the horizontal direc-
tion of the geometric centre, the v-velocity is found to be decreasing. Therefore, the absolute
value of the velocity is found to be decreasing with an increase of the Reynolds numbers in
the horizontal direction from the left wall until the right wall.

x=0.0625

x=0.5625

x=1.1875

x=1.9375

10000 20000 30000 40000 50000
Re

9.86

9.88

9.90

9.92

9.94

9.96

9.98

10.00
P

(a)

y=0.0313

y=0.2813

y=0.5938

y=0.9688

10000 20000 30000 40000 50000
Re

9.85

9.90

9.95

P

(b)
Fig. 4. Variation of pressure in horizontal and vertical directions for different Reynolds numbers

With the help of the computed numerical solutions of pressure, we have illustrated the
variation of fluid pressure at different nodes along the horizontal and vertical directions
through the geometric center of the rectangular domain for different Reynolds high num-
bers in Figure 4. We have sketched the variation of pressure at different Reynolds num-
bers 1000,5000,10000,50000 in the range of 1000 to 50000. From the Figure 4a, it is ob-
served that the fluid pressure increases with an increase of the Reynolds numbers for different
Reynolds numbers in the range of 1000 to 50000 at four different nodes, as mentioned above,
along the horizontal direction through the geometric centre. Similarly, from Figure 4b it is
observed that the fluid pressure increases with the increase of the Reynolds numbers for dif-
ferent Reynolds numbers in the range of 1000 to 50000 at four different nodes as mentioned
above along the vertical direction through the geometric center. The cause for this variation
of the pressure in both the directions is due to a heat source being placed on the bottom
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wall. Furthermore, in an enclosed region filled with an incompressible fluid as considered in
the present the investigation, when the temperature increases, the pressure of the fluid also
increases. This occurs because a heat source is placed on the bottom wall due to which
the molecules on the fluid gain more energy and thereby exert more pressure to the walls of
the enclosure. Hence, the pressure increases in both directions.
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Fig. 5. Temperature contours along horizontal direction at different Reynolds numbers
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Fig. 6. Temperature curves along x-axis at different Reynolds numbers

We have chosen the value of the Prandtl number for water as 13.6 to computed the nu-
merical solutions of the temperature variable. With the help of these numerical solutions, we
have depicted the nature of the temperature contours and the curves at different Reynolds
numbers in the range of 1000 to 50000 along the horizontal direction of the given rectangular
domain in Figure 5. From this Figure, it is observed that the flow pattern of the temperature
is oscillatory in nature. This nature of the flow pattern is especially more near the right wall
rather than at the geometric center of the domain, where it is observed to be less oscillatory.
Furthermore, the temperature curves along horizontal direction at different Reynolds num-
bers are sketched in Figures 6. From these Figures, it has been observed that at three different
Reynolds numbers such as Re= 1000,10000,50000, it is observed that the flow pattern of the
temperature is oscillatory in nature. The reason for this has just been explained. Therefore,
for high Reynolds numbers as mentioned above, the flow pattern of the temperature is found
more oscillatory at the right wall and near the center it was found to be less oscillatory.

We have computed the numerical solutions of the concentration variable by choosing the
Schmidt number at 540 that corresponds to incompressible fluids. With the help of these nu-
merical solutions, we have illustrated and elucidated the nature of the concentration contours
and curves at different Reynolds numbers in the range of 1000 to 50000 along the horizontal
direction of the given rectangular domain in Figure 7. From this Figure, it is observed that
the flow pattern of the concentration is oscillatory in nature. This nature of the flow pattern is
especially more near the right wall rather than at the geometric center of the domain, where
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Fig. 7. Concentration contours at different Reynolds numbers
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Fig. 8. Concentration curves along x-axis at different Reynolds numbers

it is observed to be less oscillatory. Furthermore, the concentration curves along horizontal
direction at different Reynolds numbers are sketched in Figures 8. From these Figures, it has
been observed that at three different Reynolds numbers such as Re = 1000,10000,50000, it
is observed that the flow pattern of the concentration is oscillatory in nature. The reason for
this has just been explained. Therefore, for the high Reynolds numbers as mentioned above,
the flow pattern of the concentration is found to be more oscillatory at the right wall and near
the center it was found to be less oscillatory.
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Fig. 9. Variation of average (a) Nusselt and (b) Sherwood number with the Reynolds numbers

For the purpose of studying the heat and mass transfer from the bottom wall of the rectan-
gular domain, we have computed the numerical solutions of average Nusselt and Sherwood
numbers [22]. These values are utilized in sketching the variation of average Nusselt and
Sherwood numbers and are given in figure 9. This figure illustrates the average Nusselt num-
ber variation versus different Reynolds numbers in the range of 1000 to 50000. We have
observed from this figure that after Re = 1000, the average Nusselt and Sherwood numbers
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increase and attain their maximum values at Re = 10000. After that, the average Nusselt and
Sherwood numbers remain constant until Re = 50000. Therefore, the heat and mass transfer
at the bottom wall first increases slightly while moving towards the geometric centre in a ver-
tical direction and, after very short distance in a vertical direction, it remains constant and
there are no further variations in heat and mass transfers.
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Fig. 10. (a) Variation of average Nusselt number vs Rayleigh number for different Richardson number

and (b) Validation of average Nusselt number with benchmark (Davis) result

We have shown the variation of the average Nusselt number versus Rayleigh number
by taking the different Richardson number in Figure 10a. Here, we observed that with an
increase in the Richardson number, the average Nusselt number increases with an increase
in Rayleigh number. We have validated the values of the average Nusselt number with the
benchmark solution in the literature investigated by Davis [3] in Figure 10b. From these
comparisons, the solutions obtained from this current investigation are in good agreement
with the benchmark solutions available in the literature.

5. Code validation

To validate our present computed numerical solutions with the available benchmark solu-
tions in the literature investigated by Ghia et al. [2], we have compared the numerical solu-
tions obtained from the present study for u and v velocities for Reynolds numbers in the range
of 1 to 1000 with the solutions of Ghia et al. [2]. From the these comparisons, it is evident
that the solutions obtained from the present study are in good agreement with the benchmark
solutions existing in the literature.
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Fig. 11. Validation of the numerical solutions
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6. Conclusions

Main conclusions of this study are summarized as follows:

• The intensity of u-velocity in the region near the top of the wall was found to be
more and also the u-velocity curves for each of the high Reynolds numbers such as
1000,5000,10000,50000 converges there.

• The absolute value of the velocity is found to decrease with the increase of the Reynolds
numbers in the horizontal direction from the left wall until the right wall.

• The fluid pressure increases with the increase of the Reynolds numbers for different
Reynolds numbers in the range of 1000 to 50000 at four different nodes as mentioned
above along the horizontal and vertical directions through the geometric centre.

• For high Reynolds numbers such as 1000,5000,10000,50000, the flow pattern of the
temperature is found to be more oscillatory at the right wall, and near the center it was
found to be less oscillatory in both horizontal and vertical directions of the geometric
center.

• For high Reynolds numbers such as 1000,5000,10000,50000, the flow pattern of the
concentration is found to be more oscillatory at the right wall and near the center it was
found to be less oscillatory in both horizontal and vertical directions of the geometric
center.

• It has been found that the heat and mass transfers at the bottom wall first increase
slightly while moving towards the geometric centre in a vertical direction and after
a very short distance in a vertical direction, it remains constant and there are no further
variations in both heat and mass transfers.

• We have validated the values of the average Nusselt number with the benchmark solu-
tion in the literature investigated by Davis [3].
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