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Abstract. In this paper, we present a new approach based on Coifman wavelets to find  
approximate values of definite integrals. This approach overcomes both CAS and Haar 
wavelets and hybrid functions in terms of absolute errors. The algorithm based on Coifman 
wavelets can be easily extended to find numerical approximations for double and triple  
integrals. Illustrative examples implemented using Matlab show the efficiency and effec-
tiveness of this new method.  
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1. Introduction  

Numerical integrations play an important role in various areas of applied sciences  
 

and engineering. Because most integrals cannot be determined via analytical methods,  
 

the numerical integration methods have taken a growing interest of many researchers  
 

for approximating the value of a definite integral. To see some quadrature rules  
 

based on polynomials, one can refer to [1-3]. In recent years, wavelets have gained  
 

a lot of popularity and have become a standard tool for many disciplines. So, many  
 

authors applied wavelets in images processing [4, 5], in mathematics [6] and in other  
 

areas of physics and engineering. Wavelet bases with collocation methods have been  
 

used for solving single, double and triple integrals [7-9], such as in [10] and for 
 122 Mk  points, the error bound corresponding to CAS wavelets is inversely 

proportional to M . Similarly, in [8] for M2  points, the Haar wavelets method 

provides an approximation error evaluated by  1MO . In addition, the Hybrid 

function method uses NM points with k-th derivative of the integrand function to 

get a better error bound estimated by kNMO )( . However, the convergence rate of 
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previous methods is only  sMO   at most and it does not decrease exponentially 

to obtain a faster approximation. Moreover, it cannot be improved by increasing 
the order derivative of the integrand function. To overcome this problem and to 
improve the convergence rate, we propose in this paper a new method based on 
Coifman wavelets for solving single, double and triple integrals. By using this new 

method, the convergence rate is improved to  NjO 22  for an integrand function 
NCf 2  and 0j . Illustrative examples have shown the accuracy and effective-

ness of our proposed method compared to existing methods.  
This work is structured as follows: The next section recalls the CAS and Haar 

wavelets methods to numerical integration. Section 3 introduces the hybrid func-
tions method. Section 4 presents the proposed method for single, double and triple 
integrals with error analysis. Section 5 provides numerical examples to investigate 
the efficiency of our proposed method. Finally, we bring this work to a close with  
a conclusion and main references.  

2. Numerical integration using CAS and Haar wavelets  

In this section, we recall the CAS and Haar wavelets methods to numerical inte-
gration for single, double and triple integrals. 

2.1. CAS wavelets 

In [7], Cosine and Sine wavelet )(, xnk  is defined by:  
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where:   cos(2 ) sin(2 ),mCAS x m x m x   0,1,2,3,...,  0,1,....,2 1,  .kk n m Z     

The set of CAS wavelets forms an orthonormal basis of   1,02L , so any function 

f  which is square integrable in the interval  1,0 , it can be expanded as the follow- 
ing form: 
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Using (1) and (2), the definite integral  
1

0
dxxf  is approximated by 
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To obtain the CAS wavelets coefficients 0,nc , we use the collocation points as  
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Therefore, by substituting these points in (2), we have:  
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by solving this linear system of equations, we get the coefficients 0,nc . Hence,  

the quadrature rule for single integrals [7] is given by:  
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and generally for the integral 
b

a
dxxf )( , we have:  
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Now, by applying the formula (7), we can obtain quadrature rules for double and 
triple integrals as the following forms:  
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2.2. Haar wavelets 

The Haar wavelets basis defined on the interval [ , )a b  is a family of functions 
defined on subintervals of [ , )a b  generated from the scaling and wavelet functions 
by the dilation and translation [8], these functions are given by:  

The scaling function: 

 1

1, for [ , ),
( )

0, ,

x a b
h x

otherwise


 


 (10) 

and the wavelet function:  
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Now, for the other functions ih :  
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The integer jm 2 , where 0,1,..., ,  2 ,  0,1,..., 1,  1Mj J J k m i m k       .  

Thus, any function  2 [ , )f L a b  can be expressed as  
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Using the collocation method with Haar wavelets, we obtain the following formula 
for single integrals:  
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For double and triple integrals, one can refer to [8, 9]. 
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3. Numerical integration using hybrid functions  

The Hybrid functions family 1,...,1,0 ,,...,2,1 ,,  mjniji  is defined on 

the interval [0,1)  by:  
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where,          0 1 1 1
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So, any function  2 [0,1)f L  can be expressed as 
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Using the collocation method for hybrid functions, we get the integration formula 
for single integrals with different values of m as in [8]:  

For 1m , 
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For 2m , 
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For 3m , 
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For approximate values of double and triple integrals with different values of m , 
one can refer to [8, 9].  

4. Proposed numerical integration method 

The aim of this section is to develop a new numerical integration method that 
overcomes the previous three methods for single, double and triple integrals in 
terms of absolute errors. 
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4.1. Coifman wavelets overview 

In [11], an orthonormal wavelet basis is called a Coifman wavelet basis (Coiflet) 
of degree N , ,...2,1N , if the corresponding scaling function   and wavelet   
satisfy:  

  supp supp 0,6 1N    , (20) 

    1, 0, 1,2,...,2 1x dx x x dx N 
 

 
     ℓ

ℓ , (21) 

   0,  0,1,...,2 1x x dx N



   ℓ
ℓ . (22) 

The Coifman scaling function   of degree N  verifies the following properties that 
will be useful in our study:  

    1,  ,
k

x k x




      , (23) 

      0,  1,2,...,2 1,  ,
k

x k x k N x




         ℓ

ℓ . (24) 

More details and other properties of coiflets, one can refer to [12]. 

4.2. Numerical formula for single integrals using coiflets 

Definition 4.1. Let   be the Coifman scaling function of degree N  and f  be  

a function defined on  16 ,61  NN . The coiflet sampling approximation of f  
at level  0 , jj  on the interval  16 ,0 N  is defined by:  
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kj  222
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The following theorem provides the numerical formula for single integrals.  

Theorem 4.2. Let ba   and  2 [2 ,  ]Nf C a b b  . For a Coifman scaling  
function   of degree N  and 0j , we define fI j  by:  
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then fI j  is an approximate value of the integral  
b

a
f x dx  whose the error esti- 

mation is evaluated by:  

   Nj

j

b

a
CfIdxxf 22 , (27) 

where C  depends only on f  and  . 
To demonstrate the previous theorem, we need to provide the following lemmas. 

Lemma 4.3. Let   be the Coifman scaling function of degree N , then we  
have:  
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Lemma 4.4. Let us consider   2 1 6 ,6 1N
f C N N    and fS j  be its coiflet 

sampling approximation on  0, 6 1N , then we have:  
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where C  depends only on f  and  . 
Proof of Lemma 4.3. The proof is easily derived, when we use the relations 

(20), (23) and (24). 
Proof of Lemma 4.4. For  1 6 ,..., 6 1 2 jk N N    and 0 6 1x N   , the  

Taylor expansion of f  at the point x  gives:  
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Using (28) and (29) of the Lemma 4.3, we get  
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Proof of Theorem 4.2. By a change of variable  6 1
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By applying the Lemma 4.4, we obtain 
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 , then the proof is  

complete.  
Remark 4.5. Since the Coifman scaling function does not have a closed  

form, its integrals are determined iteratively by the cascade algorithm with good  
approximation. 

4.3. Numerical formula for double integrals using coiflets  

Consider the following integral: 

  
 

 
,

b d y

a c y
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Applying the formula (26) to the integral  
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Now, we put 
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We apply the formula (26) once again, we obtain the numerical formula of double 
integrals with variable limits as:  
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Note that we may take 21 jj  . 

4.4. Numerical formula for triple integrals using coiflets  

The numerical formula for triple integrals is obtained in a similar way and is 
given by:  

 

 
 

 

 

 

 
 

 
   33

3 3

,

,

6 1 26 1 2 1

2 6

, ,

6 16 1 2 2

jj

b d z f y z

a c z e y z

k NN

j j
k N k

F x y z dxdydz

b a b a k
x dx H a

NN


   

  



               

  

 
 (35) 

where  
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5. Numerical examples 

In this section we give numerical experiments to illustrate the efficiency of our 
proposed method. Using our approach, the algorithms have been implemented in 
Matlab using coiflets of degree 1 and 2 with 7 iterations. So, the numerical results 
are compared with exact solutions as presented in tables.  



A new approach to numerical integration based on Coifman wavelets 41

Example 5.1. Consider the following integral:  

1

20

1

41
dx

x




 . 

Absolute errors of four methods’ applied to numerical calculation of the single  
integral are shown in Table 1. 

Table 1. Comparison of absolute errors for single integral  

Methods Parameters Absolute Errors 

CAS Wavelets 

r = 5, k = 1 2.08333e-004 

r = 11, k = 1 4.30441e-005 

r = 13, k = 4 4.81540e-007 

Haar Wavelets 

M = 4 3.25519e-004 

M = 8 8.13802e-005 

M = 16 2.03451e-005 

Hybrid Functions 

m = 1, n = 10 2.08333e-004 

m = 2, n = 15 2.31481e-005 

m = 2, n = 20 1.30208e-005 

Proposed Method 

N = 1, j = 10 1.66929e-004 

N = 1, j = 15 5.21712e-006 

N = 1, j = 20 1.63036e-007 

 

10 11 12 13 14 15 16 17 18 19 20
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0.5
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1.5
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2.5
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3.5
x 10
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CAS Wavelets

Haar Wavelets

Hybrid Function

Proposed Method

 

Fig. 1. Error graphs of Example 5.1 using four methods at different parameters 

Example 5.2. Consider the following integral:  

21 1

2 20 0

1
log( 2 1)

41

y

dxdy
x y


  

   . 
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Absolute errors of four methods’ applied to numerical calculation of the double  
integral are shown in Table 2. 

Table 2. Comparison of absolute errors for double integral  

Methods Parameters Absolute Errors 

CAS Wavelets 

r = 3, k = 1 8.31863e-004 

r = 7, k = 2 3.81794e-005 

r = 11, k = 3 3.86519e-006 

Haar Wavelets 

M = 4 4.67821e-004 

M = 8 1.16930e-004 

M = 16 2.92310e-005 

Hybrid Functions 

m = 1, n = 10 2.99375e-004 

m = 2, n = 15 3.32584e-005 

m = 2, n = 20 1.87077e-005 

Proposed Method 

N = 1, j = 10 2.00733e-004 

N = 1, j = 15 2.40027e-006 

N = 1, j = 20 7.50087e-008 

 

10 11 12 13 14 15 16 17 18 19 20
0

0.1
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0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10
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Proposed Method

 
Fig. 2. Error graphs of Example 5.2 using four methods at different parameters 

Example 5.3. Consider the following integral:  

 2

0 0 0

41
sin

2

z zy x
dxdydz

y y

  
 

 
   . 
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Absolute errors of four methods’ applied to numerical calculation of the triple inte-
gral are shown in Table 3. 

Table 3. Comparison of absolute errors for triple integral  

Methods Parameters Absolute Errors 

CAS Wavelets reported in [7] 

r = 3, k = 1 2.46417e-002 

r = 7, k = 4 7.38043e-005 

r = 9, k = 4 9.97127e-005 

Haar Wavelets reported in [9] 

M = 8 3.5959e-003 

M = 16 9.0291e-004 

M = 32 2.2597e-004 

Hybrid Functions reported in [9] 

m = 3, n = 20 2.4465e-007 

m = 4, n = 20 1.2654e-007 

m = 5, n = 20 4.2473e-0011 

Proposed Method 

N = 1, j = 20 2.21819e-007 

N = 2, j = 15 1.02981e-008 

N = 2, j = 20 6.43639e-0013 

 

10 11 12 13 14 15 16 17 18 19 20
0

0.005

0.01

0.015

0.02

0.025

CAS Wavelets

Haar Wavelets

Hybrid Function

Proposed Method

 
Fig. 3. Error graphs of Example 5.3 using four methods at different parameters 

Obviously, the numerical results and error graphs (Figs. 1-3) about these exam-
ples show that the absolute errors of our proposed method using different levels  
are smaller and decrease more quickly than those obtained by the three different 
methods. Moreover, due to the mathematical properties of coiflets, the differences 
in the obtained errors between our proposed method and other methods are very  
significant. Then, this leads to a faster and more accurate convergence for our 
method.  
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6. Conclusions 

In this paper, a new numerical integration method based on coiflets sampling 
approximation has been applied for single, double and triple integrals with variable 
limits. The comparison between four methods shows that our proposed method 
gives better results than CAS wavelets, Haar wavelets and Hybrid functions in 
terms of absolute errors.  
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