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Abstract. An analytical solution is presented for entropy generation on MHD Walter’s liquid
B fluid over a stretching sheet with elastic deformation. The governing expressions of PDEs
are converted into ODEs by suitable transformation which is solved by a hypergeometric
function. Plots for velocity, heat transfer, entropy generation and a Bejan number are
examined and their behavior is deliberated for several physical parameters. It is noticed
that the entropy generation is minimized for an Eckert number and enhanced for an elastic
deformation parameter. Moreover, these two parameters on the Bejan number profile have
reverse effects.

MSC 2010: 28D20, 74F15, 74F10, 76A10
Keywords: entropy, inclined magnetic field, elastic deformation, Walter’s liquid B fluid

Nomenclature
a a constant
Be Bejan number
BrΩ

−1 dimensionless group parameter
C f skin friction coefficient
Ec Eckert number
Ha Hartman number
k1 viscoelastic parameter
k0 elastic parameter
Mn magnetic parameter
Ns entropy generation
Nux local Nusselt number
Pr Prandtl number
Rel Reynolds number
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T temperature of the fluid
T∞ free stream temperature
Tw temperature at the surface
u, v dimensionless fluid velocity in the x and y direction, respectively
x, y dimensionless cartesian coordinates
Greek letters
δ elastic deformation parameter
η similarity variable
µ dynamic viscosity of the fluid
ν kinemetic viscosity of the fluid
ρ effective density of the fluid
σ stream-Boltzmann constant
θ dimensionless temperature
k thermal condutivity of the fluid
Subscripts
f fluid
w wall constant

1. Introduction

The entropy generation system is to compute the destruction of available work
and thus diminish the efficiency, consequently the determination of a distribution
of entropy production within the fluid flow region can help in raising the system
efficiency and achieving the thermal or mechanical design. The entropy production
is encountered in many energy-associated applications, such as cooling of modern
electronic systems, solar power collectors and geothermal energy systems. The main
objective of the system is the minimization of entropy generation. The analytical
study of entropy generation on viscoelastic fluid over a stretching sheet embedded
in a porous medium was analysed by Baag et al. [1]. They found that the higher
value of the Prandtl number minimized the entropy generation. One more analyt-
ical solution for entropy generation on viscoelastic fluid flow through a stretching
sheet with an inclined magnetic field and non-linear thermal radiation impact was
studied by Abdul Hakeem et al. [2]. The impact of entropy generation on viscoelas-
tic fluid through a rotating cylinder was examined by Mirzazadeh et al. [3]. They
obtained that the elasticity parameter minimized the entropy generation. The entropy
generation on a free convective MHD flow in a parallel-plate vertical channel was
investigated by Chin-Chia Liu and Cheng-Ying Lo [4].

The application of an inclined magnetic field in electric conducting viscoelastic
fluid has drawn the attention of researchers currently. Animasaun et al. [5] investi-
gated the effect of an induced magnetic field on viscoelastic fluid flow over a stretch-
ing sheet. Mair Khan et al. [6] studied the numerical solutions of an inclined mag-
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netic field on the Williamson nanofluid flow past a stretching sheet. Hayat et al. [7]
analyzed the heat transfer of nanofluid flow over a stretching sheet with heat gener-
ation/absorption and non-linear thermal radiation effects. In controlling momentum
and heat transfers in the boundary layer flow of different fluids over a stretching sheet,
the applied magnetic field may play an important role [8-15].

The impact of elastic deformation on Walter’s liquid B fluid flow past a imperme-
able stretching sheet was studied by Nandeppanavar et al. [16]. The effect of elas-
tic deformation on a viscoelatic fluid flow past a stretching sheet was analyzed by
Khan et al. [17]. Abdul Hakeem et al. [18] reported the effect of elastic deforma-
tion on Walter’s liquid B fluid flow over a stretching sheet with non-uniform heat
source/sink. A numerical study of elastic deformation on nano-second grade fluid
flow past a stretching surface was reported by Kalaivanan et al. [19].

Up until now, no study has been made for the analysis of elastic deformation
effect for entropy generation on Walter’s liquid B fluid flow over a stretching sheet
with an inclined magnetic field. So this reality inspires us to propose the same for
the current investigation. The main originality of the present work is to analyze
the entropy generation of an inclined magnetic field on Walter’s liquid B fluid flow
over a stretching sheet with elastic deformation. The entropy generation is calculated
using the entropy relation by substituting the velocity and temperature fields obtained
from the momentum and energy equations.

2. Formulation of the problem

Consider a steady, laminar, two-dimensional flow of an incompressible Walter’s
liquid B fluid past a stretching sheet coinciding with a plane y = 0 and the flow being
confined to y > 0. The flow is generated due to the stretching of the sheet, caused
by the simultaneous application of two equal and opposite forces along the x-axis
(see Fig. 1). Keeping the origin fixed, the sheet is then stretched with a speed varying
linearly with the distance from the slit. The basic boundary layer equations governing
the flow of Walter’s liquid B fluid can be written as
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where (u,v) are velocity components along x and y axes respectively.
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Fig. 1. Schematic diagram of flow and physical model

The assumed boundary conditions are

u = bx, v = 0 T = Tw = T∞ +A
(x

l

)2
at y = 0 (4)

u → ∞, T → T∞ as y→ ∞

With b > 0, this is stretching rate, Tw and T∞ represent the temperature of the wall
and temperature outside the dynamic region respectively. The constant A depends

on the thermal properties of the liquid and l =
√

v
b

is a characteristic length.

We define the following new variables

u = bx fη (η) v =−(bv)
1
2 f (η) , η =

(
b
v

) 1
2

y θ(η) =
T −T∞

Tw−T∞

(5)

Making use of Eq. (5), continuity Eq. (1) is identically satisfied while Eqs. (2)
and (3) take the following form:

f 2
η − f fηη = fηηη − k1[2 fη fηηη − f fηηηη − f 2

ηη ]−Mn fηsin2
γ (6)

θηη +Pr f θη −2Pr fηθ =−EcPr
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f 2
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]
(7)

where k1 =
k0b
ν
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0
ρb
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b2l2

Acp
and Pr =

µcp

k
.
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Similarly boundary conditions become,

fη (η) = 1, f (η) = 0, θ (η) = 1 at η = 0 (8)

fη (η)→ 0, θ (η)→ ∞ as η → ∞

Here boundary conditions are one less in number required to solve the flow problem
uniquely. Following Abdul Hakeem et al. [18], the solution of Eq. (6) with boundary
conditions (8) can be written in the form:

f (η) =
1− e−αη

α
, with α =

√
1+Mnsin2

γ

1− k1
(9)

Obviously, 0 < k1 < 1.
Using the solution (9) in Eq. (5), the velocity components obtained in the form

u = bxe−αη , and v =−
√

bv
{

1− e−αη

α

}
. (10)

The wall shearing stress on the surface of the stretching sheet is given by

τw =

[
v
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∂y
− k0
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−2
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(11)

The local skin-friction coefficient or the frictional drag is given by

C f =
τw

1
2 ρu2

w
= 2Re−1/2

x (1−3k1) fηη(0). (12)

2.1. Solution of thermal transport

The solution of Eq. (7), subject to boundary conditions (8), can be obtained in
terms of hypergeometric function [18] as
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The non-dimensional wall temperature gradient derived from Eq. (13) reads as
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3. Entropy generation analysis

According to Woods [20], the local volumetric rate of entropy generation in the
presence of a magnetic field is given by

SG =
k

T 2
∞

[(
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)2
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(
∂T
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)2
]
+

µ

T∞

(
∂u
∂y

)
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0

T∞

u2sin2
γ (15)

Equation (15) puts on display the three entropy generation sources. The heat trans-
port covering a finite temperature difference that generates entropy is given with the
first term of Eq. (15), viscous dissipation creating local entropy generation is the sec-
ond term, likewise, the third term represents the local entropy generated by means of
the magnetic field effect. It is appropriate to define dimensionless number for entropy
generation rate NS. This number is defined by dividing the local volumetric entropy
generation rate SG to a characteristic entropy generation rate SG0 . For the prescribed
boundary condition, the characteristic entropy generation rate is

SG0 =
k(∆T )2

l2T 2
∞

(16)

therefore, the entropy genetration number is

Ns =
SG

SG0

(17)

Using Eqs. (13), (15) and (17), the entropy generation number is given by

Ns =
4

X2 θ
2(η)+Relθ

′2(η)+Rel
Br
Ω

f ′′2(η)+
BrHa2

Ω
f ′2(η)sin2

γ (18)

where Rel and Br are respectively the Reynolds number and the Brinkman number.
Ω and Ha are respectively the dimensionless temperature difference and the Hartman
number. These numbers are given by the following relationships

Rel =
ull
ν
, Br =

µu2
p

k∆T
Ω =

∆T
T∞

, Ha = B0l
√

σ

µ
(19)

4. Bejan number analysis

In the flow region, the entropy generation number (Ns) represents the entropy
generation distribution. Bejan number (Be) relating the thermal irreversibility impor-
tance to total irreversibility is very much needed in the energy optimization problem
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and is defined as [21]
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Using Eq. (5), Eq. (23) reduces to the following form
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4
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5. Result and discussion

The physical revelation of different non-dimensionless parameters on the veloc-
ity, temperature, entropy generation and Bejan number are illustrated in this section.
In order to verify the accuracy of the present results, we have ccompared the val-
ues of the reduced Nusselt number with Turkyilmazoglu [22] and Datti et al. [23].
The comparisons are found to be good, which is shown in Table 1. Variation of a mag-
netic parameter, inclined angle, and viscoelastic parameter on f (η) is presented in
Figure 2. From this figure the presence of these parameters diminishes the movement
of the fluid. Figure 3 describes the impact of the magnetic parameter, viscoelas-
tic parameter, elastic deformation and Prandtl number on θ(η). It is revealed that
as the increasing values of magnetic parameter, viscoelastic parameter, and Prandtl
number increments θ(η) in contrast to elastic deformation which brings down θ(η).
The existence of the magnetic parameter, viscoelastic parameter, and Prandtl number
physically enhances the temperature. This enhancement is because of more heat that
is produced during the random motion of the fluid particles. In this way the temper-
ature of the fluid further improves. But elastic deformation reduces the temperature
distribution.

Table 1. Comparison of results for the reduced Nusselt number −θ
′
(0). When γ = 90,Ec = δ = 0

Mn Pr k1 Turkyilmazoglu [22] Datti et al. [23] Present value

1 0 0 1.333333 1.3333 1.333333
1 1 0 1.215773 1.2158 1.215770
1 1 0.2 – 1.1687 1.168700
0 5 0 3.31648 – 3.316480
0 10 0 4.69021 – 4.690210

The variations of magnetic parameter and the inclined angle on Ns are shown
in Figures 4 and 5 respectively. From these figures, both magnetic parameter and
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Fig. 2. Effect of aligned angle, viscoelasticity and magnetic parameters on velocity profile
with γ = 45o, k1 = 0.4, Mn = 1.0

Fig. 3. Effect of magnetic parameter, viscoelastic parameter, elastic deformation, Prandtl number on
temperature distribution with k1 = 0.1,Mn = 1.0,γ = 45o,Ec = 0.4,Pr = 3.0,δ = 1.0

inclined angle upgrades entropy generation. This means that the enhancing value of
the angle parameter strengthens the magnetic field, so magnetic force opposes the
fluid motion at the same time enhances the temperature of the fluid. Thus the entropy
generation rate increases with rising value of magnetic parameter.

Figure 6 relates entropy generation to viscoelastic parameter, it is observed from
this figure that increasing values of viscoelastic parameter slightly amplifies the
entropy generation. Physically, viscoelastic fluid increases the entropy production.
In Figure 7 it is examined that the entropy generation rate improves through higher
values of elastic deformation while at the same time the opposite effect is observed far
away from the sheet. The effect of the Eckert number on entropy generation is shown
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Fig. 4. Effect of magnetic parameter on entropy
generation with k1 = 0.4, Pr = 3.0, γ = 45o,
Ec = 0.4, δ = 1.0, Ha = 1.0, BrΩ

−1 = 1.0,
Rel = 1.0, X = 0.5

Fig. 5. Effect of angle parameter on entropy
generation with k1 = 0.4, Pr = 3.0, Mn = 1,
Ec = 0.4, δ = 1.0, Ha = 1.0, BrΩ

−1 = 1.0,
Rel = 1.0, X = 0.5

Fig. 6. Effect of viscoelastic parameter on entropy
generation with Mn = 1.0, Pr = 3.0, γ = 45o,
Ec = 0.4, δ = 1.0, Ha = 1.0, BrΩ

−1 = 1.0,
Rel = 1.0, X = 0.5

Fig. 7. Effect of elastic deformation parameter on
entropy generation with k1 = 0.4, Pr = 3.0,

γ = 45o, Ec = 0.4, Mn = 1.0, Ha = 1.0,
BrΩ

−1 = 1.0, Rel = 1.0, X = 0.5

in Figure 8. It is ultimately seen that higher values of the Eckert number minimized
the entropy production.

The distribution of the Bejan number with respect to the magnetic parameter is
shown in Figure 9. It is clear that the magnetic parameter increases the Bejan number
in this manner the irreversibility due to heat transfer is enhanced. The influences of
the viscoelastic parameter and Eckert number on the Bejan number is represented by
Figures 10 and 11 respectively. These figures reveal that the Bejan number enhances
both the viscoelastic parameter and Eckert number, relating to the fact that heat is
a form of disorganized energy. Figure 12 represents the effect of elastic deformation
on the Bejan number. It is clear that the increasing values of the elastic parameter
decreases the Bejan number.
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Fig. 8. Effect of Eckert number on entropy
generation with k1 = 0.4, Pr = 3.0, γ = 45o,
Mn = 1.0, δ = 1.0, Ha = 1.0, BrΩ

−1 = 1.0,
Rel = 1.0, X = 0.5

Fig. 9. Effect of magnetic parameter on the Bejan
number with k1 = 0.4, Pr = 3.0, γ = 45o,

Ec = 0.4, δ = 1.0, Ha = 1.0, BrΩ
−1 = 1.0,

Rel = 1.0, X = 0.5

Fig. 10. Effect of viscoelastic parameter on the
Bejan number with Mn = 1.0, Pr = 3.0, γ = 45o,

Ec = 0.4, δ = 1.0, Ha = 1.0, BrΩ
−1 = 1.0,

Rel = 1.0, X = 0.5

Fig. 11. Effect of Eckert number on the Bejan
number with k1 = 0.4, Pr = 3.0, γ = 45o,

Mn = 1.0, δ = 1.0, Ha = 1.0, BrΩ
−1 = 1.0,

Rel = 1.0, X = 0.5

Figure 13 represents the effect of the viscoelastic parameter on the skin friction
coefficient. It is clear that the skin friction coefficient increases as the viscoelastic
parameter increases. The effect of the elastic deformation parameter, viscoelastic pa-
rameter and Prandtl number on the reduced Nusselt number are plotted in Figure 14.
It is noteworthy that the reduced Nusselt number decreases with the increasing values
of the elastic deformation parameter, viscoelastic parameter and Prandtl number.

The values of fηη(0) and θη(0) are tabulated in Tables 2 and 3. From these Tables,
it clear that the skin friction increases with k1, Mn and γ . The reduced Nusselt number
increases with Pr and δ and decreases with k1, Mn, γ and Ec.
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Fig. 12. Effect of elastic deformation on the Bejan
number with k1 = 0.4, Pr = 3.0, γ = 45o,

Ec = 0.4, Mn = 1.0, Ha = 1.0, BrΩ
−1 = 1.0,

Rel = 1.0, X = 0.5

Fig. 13. Local skin friction coefficient for various
values of k1

Fig. 14. Effect of the elastic deformation parameter, viscoelastic parameter and Prandtl number
on the Nusselt number with γ = 45o, δ = 2, Ec = 0.3, k1 = 0.5, Pr = 5

6. Conclusions

Here we investigate the effect of elastic deformation for entropy generation on
Walter’s liquid B fluid flow over a stretching sheet with an inclined magnetic field
and also compute the entropy generation with the Bejan number. The various phys-
ical parameters on velocity, temperature, entropy generation and Bejan number are
analyzed. The most important results are indicated as:

• The velocity profile is a decreasing function of the magnetic parameter,
viscoelastic parameter and inclined angle.

• The temperature profile enhances with the magnetic parameter, viscoelastic
parameter and Prandtl number and it decreases with elastic deformation.
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Table 2. Values of fηη (0) for several of the parameters

k1 Mn γ fηη(0)

0.0 1.0 90o 1.41421
0.2 1.58114
0.4 1.82574
0.2 0.0 1.11803

1.0 1.58114
2.0 1.93649

0o 1.11803
45o 1.36931
90o 1.58114

Table 3. Values of θη (0) for several of the parameters

Pr k1 Mn γ Ec δ θη(0)

1.0 0.2 1.0 90o 0.4 1.0 0.96934
2.0 1.48548
3.0 1.86521

0.0 1.88104
0.2 1.86521
0.4 1.83515
0.2 0.0 2.18763

1.0 1.86521
2.0 1.60316
1.0 0o 2.18763

45o 1.90844
90o 1.89581

0.0 2.35161
0.2 2.10841
0.4 1.86521

0.0 1.74361
1.0 1.86521
2.0 1.98681

• Entropy generation enhances with the magnetic parameter, inclined angle,
viscoelastic parameter and elastic deformation whereas it decreases with
the Eckert number.

• The Bejan number increases with the magnetic parameter, viscoelastic param-
eter and the Eckert number and it decreases with elastic deformation.
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