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Abstract. In this research, our purpose is to investigate some types of solutions to a simpli-
fied modified form of the Camassa-Holm equation. The Jacobi elliptic function expansion
method is applied to this equation. Then, a lot of travelling wave solutions are obtained.
The derived solutions are in the form of Jacobi elliptic functions, hyperbolic functions, and
trigonometric functions. Graphics of solutions are drawn in order to determine the types
of the solutions. Furthermore, different kinds of solutions such as the singular kink wave
solution, the kink wave solution, and the periodic solution are achieved.
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1. Introduction

In almost all fields of modern science and engineering, nonlinear partial differ-
ential equations (NLPDEs) are commonly used to model a great deal of important
physical events such as fluid mechanics, plasma physics, solid state physics, chemical
kinematics, plasma waves, nonlinear optics, and some others. In addition to physics,
NLPDEs can appear in chemistry and biology. Substantial information about the
problems like these can be gathered if the travelling wave solutions of these equations
are gained. Hence, obtaining the travelling wave solutions of NLPDEs have attracted
the attention of most researchers. In recent years, important developments have been
made to investigate different types of solutions of NLPDEs. In this regard, a vari-
ety of effective, powerful, and useful methods have been established and utilized to
handle NLPDEs. The generalized tanh method [1], the tanh-coth method [2, 3], the
tanh-sech method [4], generalized hyperbolic function method [5], the exp-function
method [6], the (G’/G) expansion method [7,8], the modified extended tanh-function
method [9], the homotopy perturbation method [10], the modified simple equation
method [11] can be given as examples of such methods.
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One of the most respectable methods is the Jacobi elliptic function expansion
method. This method was proposed by Liu et al. [12] in 2001. In that article, the

travelling wave solutions of NLPDEs were sought in the form of u(ξ ) =
n

∑
j=0

a jsn j(ξ )

where sn represents the Jacobi elliptic sine function. This method can be found in
variety of applications, see [13, 14]. In 2005, the extended Jacobi elliptic function
expansion method was introduced by Zhang [15]. In his research, Zhang found the

exact solutions of NLPDEs in the form u(ξ ) =
n

∑
j=0

a jsn j(ξ )+
n

∑
j=1

b jsn− j(ξ ) where

sn−1 is the inverse of the Jacobi elliptic function sn and can be represented by ns.
In 2012, Alvaro searched the travelling wave solutions of some important NLPDEs

in [16]. He used the expansion, u(ξ ) = a0+
n

∑
j=1

a jsn j(ξ )+
n

∑
j=1

b jns j(ξ ). He also pro-

posed some expansions about other Jacobi elliptic functions, such as cn, nc, dn, and
nd.

The Camassa-Holm (C-H) equation has a large place in the literature. It shows up
as a shallow water approximation of the Euler equations for inviscid, incompressible,
and homogenous fluids propagating over a flat bottom. The C-H equation has at-
tracted a great deal of attention from the past until now. As a result, various research
has been made about it and some important works concerning the equation are given
below.

In 1981, C-H equation was given by Fokas and Fuchssteiner [17] as

ut +2βux−uxxt +3uux = 2uxuxx +uuxxx, t ≥, x ∈ R, (1)

where u(x, t) represents the horizontal velocity component and β ∈ R is a parameter
related to the critical shallow water speed.

In 1993, Camassa and Holm rederived the equation in [18] as

ut +2βux−uxxt +δuux = 2uxuxx +uuxxx, t ≥ 0, x ∈ R, (2)

where β and δ are nonzero parameters. The constant β is about the critical shallow
water wave speed. It is a model equation for water waves because of its integrable
bi-Hamiltonian structure.

In 1997, Boyd [19] had a different approach to the C-H equation. He stated that
the terms in the right side will be so small if the solitary wave changes slowly with
ξ = x− ct.

Therefore, the solution of

ut +2βux−uxxt +δuux = 0, t ≥ 0, x ∈ R, (3)

gives the soliton.
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In 2004, Liu [20] considered β = 0 and δ = 3. Then the C-H equation turned into
the following form:

ut −uxxt +3uux = 0, t ≥ 0, x ∈ R. (4)

He gained the peaked solitary wave solutions of (4) in the form of

u(x, t) = ce−|x−ct| (5)

where c is the speed of wave.
In 2004, Qian and Tang [21] examined the C-H equation in the case of β 6= 0 and

δ 6= 0. They obtained two peakons which are characterized by a slope discontinuity
at the peak in the wave of the C-H equation.

In 2004, Tian et al. [22] considered the modified C-H equation given by

ut +2βux−uxxt +δunux = 2uxuxx +uuxxx, t ≥ 0, x ∈ R, (6)

where n determines the strength of nonlinearity. They obtained new types of peaked
solitary wave solutions.

In 2005, Wazwaz worked on two modified forms of C-H equation given by

ut +2βux−uxxt +δunux = 0, (7)

and

ut +2βux−uxxt +δun(un)x = 0, (8)

where β , δ are nonzero real parameters and n symbolizes the strength of the
nonlinearity.

In 2005, Wazwaz [23] also obtained new compact and noncompact solutions of
the modified forms of C-H equation.

In 2005, some exact solutions to a generalized form of the C-H equation were
obtained by Shen et al. [24]. The dynamical behavior of travelling wave solutions
and their bifurcations were examined as well.

In 2008, Bin et al. [25] obtained several travelling wave solutions of a generalized
C-H equation. Under some parametric conditions, the solutions were represented in
the form of explicit and implicit waves.

In 2009, various types of exact solutions to a modified form of the C-H equations
were obtained by Rui et al. [26]. Moreover, they gained a large number of new trav-
elling wave solutions. Under some conditions, two kinds of different bifurcations of
travelling wave were found.

In 2013, the topological soliton solutions for the modified C–H equation were
acquired by Bekir and Güner [27]. They stated that these dark solitons may well
describe natural phenomena in physics and other fields such as the propagation of
these solitons with a finite speed.
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In 2016, Syed et al. [28] studied the simplified modified form of C–H equation.
The travelling wave solutions were attained in terms of the hyperbolic, trigonometric,
and rational functions.

In our research, we consider the following simplified modified form of C-H
equation

ut +2βux−uxxt +δu2ux = 0, t ≥ 0, x ∈ R, (9)

where, β ,δ ∈ R are nonzero parameters.
The purpose of this work is to apply the extended Jacobi elliptic function expan-

sion method to acquire the exact solutions of the simplified modified form of the
C-H equation. In this application, it is seen that the travelling wave solutions can be
expressed by the Jacobi elliptic function expansions, particularly in terms of sn and
ns. Then, the solutions can be obtained in the form of hyperbolic and trigonometric
functions for particular values of m.

2. Outline of Jacobi elliptic function expansion method

In this section, the summary of the method is given. By using this method, we
have sought for the travelling wave solutions of the following nonlinear partial dif-
ferential equation

P(u,ut ,ux,uxx,uxt ,utt ,uxxt , . . .) = 0. (10)

Firstly, the wave transformation is considered as in the following:

u(x, t) = v(ξ ),ξ = x−λ t, (11)

where λ is a constant.
Then, putting the ordinary derivatives of v(ξ ) instead of the partial derivatives of

u(x, t) reduces (10) to the following ODE with respect to the variable ξ ,

Q
(
v,v′,v′′, ...

)
= 0 (12)

with Q being a polynomial of the functions v,v′,v′′, . . . .
In this method, different kinds of solutions to (12) are investigated in the following

form

v(ξ ) = a0 +
n

∑
j=1

a jsn j(kξ |m)+
n

∑
j=1

b jns j(kξ |m) (13)

where n > 0 is desired positive parameter and named as the balancing constant.
In (12), equating the power of highest-order of linear and nonlinear terms to each
other gives n.
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3. Solutions of simplified modified form of C–H equation

In this part, the C-H equation is considered with β = 1 and δ =−3. In this case,
the equation becomes

ut +2ux−uxxt −3u2ux = 0, t ≥ 0, x ∈ R. (14)

Here we apply the Jacobi elliptic function expansion method to obtain the solu-
tions of (14). Firstly, the wave transformation is used. Then, the equation (14) is
converted into the following ordinary differential equation with respect to ξ :

−V v′+2v′+V v′′′−3v2v′ = 0. (15)

Integrating the equation (15) and taking the integration constant as zero yield

−V v+2v+V v′′− v3 = 0. (16)

One can rewrite this equation as follows:

v′′+(
2−V

V
)v− (

1
V
)v3 = 0. (17)

It has the form of Duffing equation [29] with p =
2−V

V
, q =− 1

V
and r = 0.

The above equation gives the balancing constant as n = 1.
Then, the solution is investigated in the following form:

v(ξ ) = a0 +a1.sn(kξ |m)+b1.ns(kξ |m). (18)

Inserting this into (17) gives the following algebraic system:

3a0a2
1q = 0,

a3
1q+2k2m2a1 = 0,

3a2
1b2

1q+3a2
0a1b1− k2m2a1b1− k2a1b1 + pa1b1 = 0,

6a0a1b1q+a3
0q+a0 p = 0,

b3
1q+2k2b1 = 0.

By solving this system, we obtain the following unknown parameters:

a0 = 0,a1 =
m
√
−2p√

(m2 +6m+1)q
,b1 =

√
−2p√

(m2 +6m+1)q
,k =

√
p√

(m2 +6m+1)
,

a0 = 0,a1 =
m
√
−2p√

(m2−6m+1)q
,b1 =−

√
−2p√

(m2−6m+1)q
,k =

√
p√

(m2−6m+1)
,
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a0 = 0,a1 =
m
√
−2p√

(m2 +1)q
,b1 = 0,k =

√
p√

(m2 +1)
,

a0 = 0,a1 = 0,b1 =
m
√
−2p√

(m2 +1)q
,k =

√
p√

(m2 +1)
,

Putting these coefficients in (18) provides us with the solutions in the terms of
Jacobi elliptic functions:

v1(ξ )=±
√
−2p√

(m2 +6m+1)q
[m.sn(

√
p√

(m2 +6m+1)
ξ |m)±ns(

√
p√

(m2 +6m+1)
ξ |m)],

v2(ξ )=±
√
−2p√

(m2−6m+1)q
[m.sn(

√
p√

(m2−6m+1)
ξ |m)−ns(

√
p√

(m2−6m+1)
ξ |m)],

v3(ξ ) =±m
√
−2p√

(m2 +1)q
sn(

√
p√

(m2 +1)q
ξ |m),

v4(ξ ) =±
m
√
−2p√

(m2 +1)q
ns(

√
p√

(m2 +1)q
ξ |m).

By letting m−→ 1, we obtain hyperbolic and trigonometric solutions:

v1(ξ ) =±
√
−p
2q

tanh(
√

p

2
√

2
ξ )±

√
−p
2q

coth(
√

p

2
√

2
ξ ),

v2(ξ ) =±

√
−2p

q
csc(
√

pξ ),

v3(ξ ) =±
√
−p
q

tanh(
√

p
2

ξ ),

v4(ξ ) =±
√
−p
q

coth(
√

p
2

ξ ),

where p =
2−V

V
and q =− 1

V
.

4. Graphical representations of the solutions

In particular, we may take V =
1
2

. Then, the solutions can be rewritten:

u1(x, t) =±
√

3
2

tanh(

√
6

4
(x− t

2
)±
√

3
2

coth(

√
6

4
(x− t

2
)),
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u2(x, t) =±
√

3csc(
√

3(x− t
2
),

u3(x, t) =±
√

6
2

tanh(

√
6

2
(x− t

2
),

u4(x, t) =±
√

6
2

coth(

√
6

2
(x− t

2
).

Here we plot the 2D and 3D graphs of the solutions u1(x, t), u2(x, t), u3(x, t), and
u4(x, t). Then, we determine the types of solutions from the 3D graphs. Moreover,
we illustrate the variations of the solutions depending on t.

The graphs of the solutions are shown in Figures 1-8. These figures give us
opportunity to analyze the types of the solutions of the equation (17). Figures 1 and
2, 7 and 8 give that u1 and u4 are singular kink wave solutions. It is clear that u2
is a periodic solution from Figures 3 and 4. As seen in Figures 5 and 6, u3 is a kink
wave solution.

Fig. 1. 3D plot of the solution
u1(x, t),−10≤ x, t ≤ 10

Fig. 2. Plot u1 of the function
u1(0,t)

5. Conclusions

Our aim is to get different kinds of solutions to a simplified modified form of the
Cammassa-Holm equation. We achieve this purpose with the help of the Jacobi ellip-
tic function expansion method. It gives several kinds of solutions. In the procedure
of this method, solutions are gained in the terms of Jacobi elliptic functions at first,
and then we obtain the hyperbolic and trigonometric solutions by some properties of
Jacobi elliptic functions. We analyze the graphs of the solutions shown in Figures 1-8
and determine their types. Eventually, we achieve singuler the kink wave solutions,
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Fig. 3. 3D plot of the solution
u2(x, t),−10≤ x, t ≤ 10 Fig. 4. Plot u2 of the function

u2(0,t)

Fig. 5. 3D plot of the solution
u3(x, t),−10≤ x, t ≤ 10 Fig. 6. Plot u3 of the function

u3(0,t)

Fig. 7. 3D plot of the solution
u4(x, t),−10≤ x, t ≤ 10

Fig. 8. Plot u4 of the function
u4(0,t)
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the kink wave solution and the periodic solution of a simplified modified form of the
Camassa-Holm equation. All of these findings indicate that the method is a useful,
powerful, and comprehensive one to solve most of NLPDEs.
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