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Abstract. In the present paper, the Generalized Differential Transform Method (GDTM)  

is used for obtaining the approximate analytic solutions of a free vibration linear differential 

equation of a single-degree-of-freedom (SDOF) system with fractional derivative damping. 

The fractional derivatives are described in the Caputo sense. 
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1. Introduction  

Differential equations with fractional order are generalizations of classical dif-

ferential equations of integer order and have recently been proved to be valuable 

tools in the modeling of many physical phenomena in various fields of science and 

engineering. By using fractional derivatives, a lot of work has been done for a bet-

ter description of considered material properties. Based on enhanced rheological 

models, Mathematical modeling naturally leads to differential equations of frac-

tional order and to the necessity of the formulation of the initial conditions to such 

equations. Recently, various analytical and numerical methods have been employed 

to solve linear and nonlinear fractional differential equations. The differential 

transform method (DTM) was proposed by Zhou [1] to solve linear and nonlinear 

initial value problems in electric circuit analysis. This method has been used for 

solving various types of equations by many authors [2-15]. DTM constructs an 

analytical solution in the form of a polynomial and different from the traditional 

higher order Taylor series method. For solving two-dimensional linear and nonlinear 

partial differential equations of fractional order, DTM is further developed as the 
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Generalized Differential Transform Method (GDTM) by Momani, Odibat, and  

Erturk in their papers [16-18]. 

Recently, Vedat Suat Ertiirka and Shaher Momanib applied the generalized dif-

ferential transform method to solve fractional integro differential equations [19]. 

The GDTM is implemented to derive the solution of space-time fractional telegraph 

equation by Mridula Garg, Pratibha Manohar and Shyam L. Kalla [20]. Manish 

Kumar Bansal, Rashmi Jain applied generalized differential transform method  

to solve the fractional order Riccati differential equation [21]. Aysegul Cetinkaya, 

Onur Kiymaz and Jale Camli applied generalized differential transform method  

to solve non linear PDE’s of fractional order [22]. 

2. Mathematical preliminaries on fractional calculus 

In the present analysis we introduce the following definitions [23, 24]. 

Definition 1. Let R  On the usual Lebesgue space  ,L a b  integral operator 

I


 defined by 

   
 

   1

0

1
xd f x

I f x x t f t dt
dx




 





  

   and 

   0I f x f x  

is called Riemann-Liouville fractional integral operator of order 0   and a x b  . 

It has the following properties: 

I.  I f x  exists for any  ,x a b  

II.    I I f x I f x     

III.    I I f x I I f x     

IV. 
 

 
1

1
I x x   

 
 


  

 

where    ,f x L a b , , 0   , 1   . 
 

Definition 2. The Riemann-Liouville definition of fractional order derivative is 
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where n  is an integer that satisfies 1n n   .  
 

Definition 3. A modified fractional differential operator 0
c

xD  proposed by Caputo 

is given by  
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Where  R    is the order of operation and n  is an integer that satisfies 

1n n   . 

It has the following two basic properties [25]: 

I. If  ,f L a b  or  ,f C a b  and 0   then    0 0
c

x xD I f x f x   . 

II. If  ,nf C a b  and if 0   then    
   1

0 0

0

0

!

k
n

c k
x x

k

f
I D f x f x x

k

 




  ; 

1n n   . 

 

Definition 4. For m  being the smallest integer that exceeds  , the Caputo time- 

fractional derivative operator of order 0  , is defined as [26] 
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Relation between Caputo derivative and Riemann-Liouville derivative: 
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   ; 1m m    

Integrating by parts, we get the following formulae as given by [27] 

I.            
1

1

0

b b n b
c RL RL j n RL n j
a x x b x b x b

a
ja a

g x D f x dx f x D g x dx D g x D f x  


   



       

II. For 1n  ,            1 .

b b
b

c RL
a x x b x b

a
a a

g x D f x dx f x D g x dx I g x f x         

3. Generalized one dimensional differential transform method 

 Generalized differential transform of a function  y x  in one variable is denoted 

by  Y k  and defined as follows [16-18]: 

  
     

0

0

1

1

k

x
x x

Y k D y x
k


  

     
 (1) 

where 0,1   and  
0 0 0 0

, ,.....,
k

x x x xD D D D    (k-times). 
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and the inverse generalized differential transform of  Y k  is given by 

     0

0

k

k

y x Y k x x








   (2) 

It has the following properties: 

I. If      u x v x w x   then      U k V k W k     

II. If    u x av x ; a R  then    U k aV k   

III. If      U x v x w x  then      
0

k

r

U x V r W k r  


   

IV. If    0

n
u x x x


   then    U k k n    

V. If    
0xu x D v x ; 0 1   then  
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1

k
U k V k
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VI. If    u x x f x  where 1   ,  f x  has the generalized Taylor series  

expansion    0

0

n

n

n

f x a x x






   and  

a. 1    and   is arbitrary or 

b. 1   ,  arbitrary and 0na   for 0,1,2,.... 1n m  , where 1m m   . 

Then (1) becomes 
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VII. If    
0x

u x D f x , 1m m    and the function  f x  satisfies the condi- 

tions given in (VI) then    
 

1

1

k
U k F k
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where  U k ,  V k ,  W k  and  F k  are the differential transformations 

of the functions  u x ,  v x ,  w x  and  f x  respectively and 

 
1 ;

0 ;

k n
k n

k n



  


 

4. Solution of the free vibration linear differential equation  

of single-degree-of-freedom (SDOF) system  

with fractional derivative damping 

In this section, we consider the free vibration linear differential equation of  

single-degree-of-freedom (SDOF) system with  fractional derivative damping  
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d x t d x t
m c kx t

dt dt



    (3) 

subject to initial conditions  0x p (constant) and  0x q  (constant),  

where 
d

dt



  is the fractional differential operator (Caputo derivative) of order 

0 1   and m, c, k are the mass, damping and stiffness coefficient respectively. 

Applying generalized one-dimensional differential transform (1) with 0 0t   on 

(3) we obtain 
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with  0X p   and 
1

X q 
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Taking 1
2

  , then (4) and (5) becomes 
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 (6) 

with  1
2

0X p  and  1
2

2X q   (7) 

Now utilizing the recurrence relation (6) and the initial condition (7), after a little 

simplification we obtain the following values of  1
2

X k  for 0,1,2,......k   
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; 

 

 
 

 

2 22

1 3 3
2

2 1
12

7

k c q k pkqc
X

m m

 
   
  
 

 

and so on. 

Now, from (2), we have 
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1

20

h

h

x t X h t




  (8) 

Using the above values of  1
2

X k ; 0,1,2,.....k   in (8) the solution of (3) is  

obtained as 
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 (9) 

Taking 1
3

  , then (4) and (5) becomes 

      1 1 1
3 3 3

1 1 2
1

3 3 3
5 6

1 1
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3 3

h h
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m h h

           
        
               

 (10) 

with 

  1
3

0X p  and  1
3

3X q  (11) 

Now utilizing the recurrence relation (10) and the initial condition (11), after  

a little simplification we obtain the following values of  1
3

X k  for 0,1,2,......k   
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and so on. 

Now, from (2), we have 
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1
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h

h

x t X h t




  (12) 

Using the above values of  1
3

X k ; 0,1,2,.....k   in (12) the solution of (3) is 

obtained as  
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Taking 1
4

  , then (4) and (5) becomes  

      1 1 1
4 4 4
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1
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4 4

h h

X h c X h kX h

m h h

           
        
               

 (14) 

with  1
4

0X p  and  1
4

4X q   (15) 

Now utilizing the recurrence relation (14) and the initial condition (15), after  

a little simplification we obtain the following values of  1
4

X k  for 0,1,2,......k   
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Now, from (2), we have 
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  (16) 

Using the above values of  1
4

X k ; 0,1,2,.....k   in (16) the solution of (3)  

is obtained as  

 
       

1511
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2
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Taking 1
5

  , then (4) and (5) becomes  

      1 1 1
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 (18) 
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with  1
5

0X p  and  1
5

5X q   (19) 

Now utilizing the recurrence relation (18) and the initial condition (19), after  

a little simplification we obtain the following values of  1
5

X k  for 0,1,2,......k   
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and so on.  

Now, from (2), we have 
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Using the above values of  1
5

X k ; 0,1,2,.....k   in (20) the solution of (3) is 

obtained as  
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5. Conclusions 

In the present study, we have applied the Generalized Differential Transform 

Method (GDTM) to find the approximate analytic solution of the free vibration  

linear differential equation of single-degree-of-freedom (SDOF) system with frac-

tional derivative damping. It may be concluded that the GDTM is a reliable tech-

nique to handle linear and nonlinear fractional differential equations. The GDTM 

provides more realistic series solutions compared with other approximate methods. 
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