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Abstract. In the present paper, the Generalized Differential Transform Method (GDTM)
is used for obtaining the approximate analytic solutions of a free vibration linear differential
equation of a single-degree-of-freedom (SDOF) system with fractional derivative damping.
The fractional derivatives are described in the Caputo sense.
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1. Introduction

Differential equations with fractional order are generalizations of classical dif-
ferential equations of integer order and have recently been proved to be valuable
tools in the modeling of many physical phenomena in various fields of science and
engineering. By using fractional derivatives, a lot of work has been done for a bet-
ter description of considered material properties. Based on enhanced rheological
models, Mathematical modeling naturally leads to differential equations of frac-
tional order and to the necessity of the formulation of the initial conditions to such
equations. Recently, various analytical and numerical methods have been employed
to solve linear and nonlinear fractional differential equations. The differential
transform method (DTM) was proposed by Zhou [1] to solve linear and nonlinear
initial value problems in electric circuit analysis. This method has been used for
solving various types of equations by many authors [2-15]. DTM constructs an
analytical solution in the form of a polynomial and different from the traditional
higher order Taylor series method. For solving two-dimensional linear and nonlinear
partial differential equations of fractional order, DTM is further developed as the
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Generalized Differential Transform Method (GDTM) by Momani, Odibat, and
Erturk in their papers [16-18].

Recently, Vedat Suat Ertiirka and Shaher Momanib applied the generalized dif-
ferential transform method to solve fractional integro differential equations [19].
The GDTM is implemented to derive the solution of space-time fractional telegraph
equation by Mridula Garg, Pratibha Manohar and Shyam L. Kalla [20]. Manish
Kumar Bansal, Rashmi Jain applied generalized differential transform method
to solve the fractional order Riccati differential equation [21]. Aysegul Cetinkaya,
Onur Kiymaz and Jale Camli applied generalized differential transform method
to solve non linear PDE’s of fractional order [22].

2. Mathematical preliminaries on fractional calculus

In the present analysis we introduce the following definitions [23, 24].
Definition 1. Let € R™ On the usual Lebesgue space L(a,b) integral operator
1% defined by

17 (x) = dd; () _ . (la);li(x—t)a_l £(¢)dt and

I°f(x)= /()

is called Riemann-Liouville fractional integral operator of order « > 0 and a < x < b.
It has the following properties:

L I“f(x) exists for any x € [a,b]
I 117 f(x)=1"" f(x)
L 1917 f(x)=1"1° f (x)
F(]/+1) aty
— X
F(a +y+ 1)
where f(x)eL[a,b], a,20,y>-1.

IV. I*X" =

Definition 2. The Riemann-Liouville definition of fractional order derivative is

1 "e

oyl

0

d”
— In—a
dx" 0 x

600 () ()=

where n is an integer that satisfies n—1<a <n.

Definition 3. A modified fractional differential operator ;D proposed by Caputo
is given by

dl’l
dx"

16 =g e

ngf(x) =0 1::_0[
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Where a(a eR*) is the order of operation and » is an integer that satisfies
n—l<a<n.
It has the following two basic properties [25]:
I If feL,(ab)or feC[a,b] and o >0 then D717 f(x)= f(x).
. ~ 'S f(k)(0+) k
ILIf feC"[a,b] and if a>0 then Iy D{f(x) =f(x)—HTx ;
n—l<a<n.

Definition 4. For m being the smallest integer that exceeds ¢, the Caputo time-
fractional derivative operator of order & > 0, is defined as [26]

Dfu(x,t) :—8 ulx)

ot”
—6'”u(x,§) ;. a=meN
_ og” ’
B 1 mean O"u(x,8)
F(—m—a !(1_5) e dé ; m—-1<a<m

Relation between Caputo derivative and Riemann-Liouville derivative:

oDLf () =500 Z;F(k a+l)

k-a

cm—1l<a<m

Integrating by parts, we get the following formulae as given by [27]

b ’ b n—1 . X b
L Ig(x) <Dy f(x)dx= _[f(x) * Dy g(x)dx +Z[RfD,f’+’_”g(x) RfD}f_’_lf(x)L

a a j=0

b

a

II. For n=1, j.g(x) ;’fo(x)dx =j.f(x) RﬁDg‘g(x)dx+[x1;_“g(x).f(x)}

3. Generalized one dimensional differential transform method

Generalized differential transform of a function y( x) in one variable is denoted
by Y, (k) and defined as follows [16-18]:

Ya(k)=m[(l>; )"y(x)} (1)

X=X

where o 6(0,1] and (D ) =D% D% ... ,ng (k-times).

X027 Xxp?
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and the inverse generalized differential transform of Y, (k) is given by

)= 37, (k) (x-x)" @

k=0

It has the following properties:
L If u(x)=v(x)Zw(x) then U, (k)=V, (k)£W, (k)
II. If u(x)zav( ); a€R then U

a

L If U(x)=v(x)w(x) then U, (

IV. If u(x)=(x-x,)" then U, (k)z
T(a(k+1)+1)
I (ak+1)
where A>-1, f (x) has the generalized Taylor series

)"

V. If u(x)=Dgv(x); 0<a <1 then U, (k)= V,(k+1)
VL If u(x):xif( )

expansion f Za xX— xo m and

a. f<A+1 and « is arbitrary or
b. f>2A+1,a arbitrary and a, =0 for n=0,1,2,...m—1, where m—-1< f<m.

Then (1) becomes
1 ak
U (k)=———| D
«(F) F(ak+1)[ o u(x)lo

VIL If u(x)=D7 f(x), m=1<y<m and the function f (x) satisfies the condi-

r 1
tions given in (VI) then U, (k) = %Fa (k +lj
ak + a

where U, (k), V,(k), W, (k) and F, (k) are the differential transformations

a o

of the functions u(x), v(x), w(x)and f(x) respectively and
1 ; k=n

5(;{_”):{0

; k#n

4. Solution of the free vibration linear differential equation
of single-degree-of-freedom (SDOF) system
with fractional derivative damping

In this section, we consider the free vibration linear differential equation of
single-degree-of-freedom (SDOF) system with fractional derivative damping
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. dzx(t) e d“x(t)

dr? dt”

+kx()=0 3)

subject to initial conditions x(O) = p(constant) and x’(O) = g (constant),

o

where is the fractional differential operator (Caputo derivative) of order

dt”
0<a <1 and m, c, k are the mass, damping and stiffness coefficient respectively.
Applying generalized one-dimensional differential transform (1) with #, =0 on

(3) we obtain

I G G B | G R
) mr(a(h_ij+3j r(a[h_ijﬂj ( « J ( J

with X, (0)=p and X, (lqu. (5)
a

“

Taking a = y, then (4) and (5) becomes

r@h-l] r@h—;]
c X

X%(h)z—mr(;hﬂj F(;h—lj 3y (h=3)+ kX, (h-4) (6)

with X%(O):p and X%(Z)zq (7)

Now utilizing the recurrence relation (6) and the initial condition (7), after a little
simplification we obtain the following values of X v (k) for £k=0,1,2,......
2

_o: _o: _ ke 1 _cq 1
X%(l)—o, X%(3)—0, X%(4)— mr(3),X%(5)_ mr(%)

_tg 1 _ch 1 _Cqtkp 1
Xy,(6)= mr(4)’X%(7)_m2 r(%)’X%(g)_ m*>  T(5)

_2ckqg 1 B k*q cthkp) 1 ]
X%(”‘?r(%)’ X%(lo)_(mS T JF(6)’
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c(czq+k2p) ckzp 1

X%(ll)—[ o~ s r(l%)’
2 k(Pg+k?

N

and so on.
Now, from (2), we have

x(0)=2 X, ()" ®)

Using the above values of XV (k); k=0,1,2,..... in (8) the solution of (3) is
2

obtained as
kp 1 , cq 1 5 kg 1 5 chkp 1 7
x(t)=p+qt— rr—-— - r+— t
( ) m F(3) m r(%) m F(4) m’ r(%)
cq+kip 1, 2ckg 1 % k*q ckp) 1 5
- t
T ) T r(%)t T (6
2 2
~ C(czqtkzp)+ck23p Loy 2kq302+k(ch;kp) 1 )
N [ A
Taking a = y, then (4) and (5) becomes
F[lh—lJ F(;h—ij
3 X

) o)

(h=5)+kx¥, (h=6)|  (10)

with

X%(O)zp and X,/ (3)=q (11)

Now utilizing the recurrence relation (10) and the initial condition (11), after
a little simplification we obtain the following values of X v (k) for £=0,1,2,......
3
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X%(nzo;X%(Uzo;X%(@zO;X%(ﬂ:O;X%(Qz—égf%g;

o __cq 1 _ kg 1. o
X%(7)—0, X%(g)_—mr(l%),x%@)_ . (4),)(%(10)—0,

ckp 1 kzp 1 c2q 1
x,(1)=2_1 . x =K2_1 .y (3=-24_1
%( ) m’ r(l%)’ %( ) m* T(5) %( 3) m* r(l%)’
2ckg 1 k*q 1 ) c? 1

X%(14)=7—r(1%);X%(ls)zym, X%(16):—7r(1%)

and so on.
Now, from (2), we have

o0

xm=zgﬂm% (12)

h=0 /3
Using the above values of X Y (k); k=0,1,2,..... in (12) the solution of (3) is
3
obtained as

- ko 1 eq 1 5 kg 1 s dp 1
x(t)=p+qt mF(3)t mr(l%)t T s r(l%)t
p 1, cq 1 1y 2kg 1 4 kq 1
T @f+mqp%y +M1ﬂ%f G

_ czkp 1 16/

S r(l%)t SR

Taking o = y , then (4) and (5) becomes

Fuh—lj ruh—i]
c X

X%(h)z—mruthlj F(ih—lj %(h—7)+kX%(h—8) (14)

5

t

(13)

with X%(O)zp and X%(4)=q (15)

Now utilizing the recurrence relation (14) and the initial condition (15), after
a little simplification we obtain the following values of X Y, (k) for k=0,1,2,......
4
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X%(z)zo; X%(l):o; X, (3)=0; X%(S):O; Xy(6):0;

4

X, (7)=0; X%(8)=—%$; X, (9)=0; X, (10)=0:
__cq 1 kg 1 , o
X%(ll)——;T%r),X%(m) mr(4) (13) 0; X%(14)—0,

ckp 1

X%(IS) - W 4(16) - ﬁ; X%(17)=0;
qg 1 _2ckq 1 _kq
z—r(z%),xl4(19) - r(z/) m? ( )

X (21)=0; X%(zz)z—c o]

A

X%(IS)

C
m

and so on.
Now, from (2), we have

K=Y x,, ()" (16)

Using the above values of Xy (k); k=0,1,2,..... in (16) the solution of (3)
4

is obtained as

mT(G)  m r(l%) m r(4) m r(l%)t

k2p142 L%, 2ckg 1 v

5

+— > f

m CE U A
_Czkf N (17)
m (13

Taking o = 5 then (4) and (5) becomes

F[;h—lj F[;h—:]
X

X%(h)z_ml"[lhﬂjcl“(lh—lj %(h—9)+kX%(h—10) (18)
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with X%(O)zp and X%(S)zq (19)

Now utilizing the recurrence relation (18) and the initial condition (19), after
a little simplification we obtain the following values of X 7 (k) for £=0,1,2,
5

X%(z)zo; X%(l)zo; X%(3)=O; X%(4)=O; X%(6)=0;

X, (7)=05 X, (8)-0: 1, 9) =05 1, (10) =2, 1=

cq 1 kg 1
X, (12)=0; X,,(13)=0; X, (14)=—4__~__. x (15)=-"4
%( )=0; %( 3)=0; %( )

mr(l%)’ %( 5)= mm;

X%(16)=0; X%(17)=0; X%(18)=0; X%(zo):k—f%s);
X),(21)=0: X, (22)=0: X%(23)=fnf r(2185)’

_2ckg 1 _kzq I A
X%(24)_7@, X%(ZS)_?M’ Xy, (26)=0;

2
kp 1
X,,(27)=0; X,,(28)=-—L
b b m r(3%)
and so on.
Now, from (2), we have

x(t)zZXy (h)t% (20)

Using the above values of X Y (k); k=0,1,2,..... in (20) the solution of (3) is
5

obtained as

wTE) T mr(19]) T wT(#) et r(2g)

2 2 2
k'p 1 4, c¢qg 1 230 2ckq 1 t2%+kq

14 19
x(t)=p+qt—@—1 poca L s kg 1 cp 1%

5

1
m T(5) +7r(z%) i EARGRG
_czkp 1 t2%

— r(3%) Fooreeeereoenn 1)

t
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5. Conclusions

In the present study, we have applied the Generalized Differential Transform
Method (GDTM) to find the approximate analytic solution of the free vibration
linear differential equation of single-degree-of-freedom (SDOF) system with frac-
tional derivative damping. It may be concluded that the GDTM is a reliable tech-
nique to handle linear and nonlinear fractional differential equations. The GDTM
provides more realistic series solutions compared with other approximate methods.
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