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Abstract. In this paper, the steady three-dimensional problem of condensation film on an 

inclined rotating disk is considered. The governing nonlinear partial differential equations 

are reduced to the nonlinear ordinary differential equations system by a similarity trans-

form. The equation system is solved by the variation of parameters method (VPM) which is 

rather used to solve nonhomogeneous linear differential equations but can also be used to 

solve nonlinear differential equations. This method has not previously been used to solve  

a nonlinear condensation problem. The dimensionless velocity and temperature profiles are 

shown, and the influence of Prandtl number and rotation ratio on the flow field and the 

Nusselt number are discussed in detail. In order to assess the accuracy of the solutions  

obtained by this method, the problem is also solved numerically using the Matlab bvp4c 

solver. The validity of our solutions is verified by the numerical results. 
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1. Introduction 

The removal of a liquid condensate from a cooled, saturated vapor is important 

in some engineering applications such as spray cooling, spray coating and chemical 

vapor accumulation processes commonly used in the semiconductor industry  

to produce thin films. A complete physical model of the condensation is required  

for the fluid flow and heat transfer analysis of these processes. A well-known study 

conducted by Nusselt [1] on condensation on a vertical plate, forms the basis of many 

theoretical studies of condensation. Koh et al. [2] developed Nusselt’s solution  

taking into account the inertia and convective terms and the vapor resistance in the 

flow of the condensing fluid.  Based on the simplicity of Nusselt’s model, Sparrow 

and Gregg [3] studied the condensation on a disk rotating in steady vapor with a large 
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volume. In this study, making use of the well-known study of von Karman [4] on  

a rotating disk in an infinite fluid environment, they transformed the Navier-Stokes 

equations into a set of nonlinear ordinary differential equations, and numerically 

integrated them for a similarity solution for several finite film thicknesses. Their 

work was extended by adding vapor drag by Beckett et al. [5] and adding suction 

on the plate by Chary and Sarma [6]. 

In this study, the flow of liquid film composed of condensing liquid on a disk 

obliquely positioned under the influence of centrifugal and gravitational forces  

has been studied. This problem was solved by various researchers using different 

solution methods. For example, Wang transformed the problem of three-dimensio-

nal condensation on an oblique plate into a nonlinear set of ordinary differential 

equations [7] by using a similarity transformation. Wang solved this problem by 

the perturbation method for small values of the problem parameter and he solved 

the problem with the fifth order Runge-Kutta method in order to determine the  

parameter range in which the perturbation method is valid and presented the results 

in the literature. The same problem was solved using the Homotopy Analysis 

Method by Rashidi and Dinarvand [8] using the Homotopy Perturbation Method  

by Sheikhholeslami et al. [9], using the Differential Transformation Method by Ra-

shidi and Mohimanianpour [10], using the Optimal Homotopy Analysis Method 

[11], using the Extended Optimal Homotopy Asymptotic Method [12] and using 

Akbari-Ganji Method [13]. 

In this study, liquid film formed by the condensing fluid on a rotating disk  

influenced by both centrifugal force and gravitational force is considered. The 

problem is expressed by a set of partial differential equations. By the similarity 

transformation proposed by Wang [7], the problem is transformed into a set of non-

linear ordinary differential equations. This set of equations has been solved  

using variation of parameters method [14-17] which is rather used to solve non- 

homogeneous linear differential equations but also has been proposed by some  

researchers for the solution of nonlinear differential equations. This method has  

recently been used by Moore [18] for the first time in a doctoral thesis for non-linear 

heat transfer problems. Other studies by Moore and Jones [19, 20] have also been 

included in the literature as the first studies where the method was used in the  

problems of heat transfer. This study is the first study in which the nonlinear fluid 

condensation problem was solved by the variation of parameters method. 

2. Mathematical formulation and flow analysis  

In Figure 1, a disk is seen having the angular velocity Ω rotating in its own 

plane and in β angle horizontally. As a result of the condensation on the disk,  

a liquid film is formed accumulated with W velocity at t thickness. The mathemati-

cal formulation of the problem is stated in the (x, y, z) coordinate system and the z 

axis being the rotation axis. Since the thickness of the film is too small compared  

to the radius of the disk, the end effects can be neglected. Moreover, it is stated  
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in the literature that the shear stress on the vapor-fluid interface is insignificant [7]. 

The ambient pressure on the surface of the film is constant at p0 and the pressure in 

the film is only the function of the z coordinate. Assuming that the thermophysical 

properties of the fluid are constant, the continuity, momentum and energy equa-

tions for the steady state conditions are stated in the following form: 

 0=++
zyx
uuu  (1) 

 ( ) βν singuuuwuvuuu
zzyyxxzyx
+++=++  (2a) 

 ( )
zzyyxxzyx
vvvwvvvuv ++=++ ν  (2b) 

 ( )
ρ

βν z

zzyyxxzyx

p
gwwwwwvwuw −−++=++ cos  (2c) 

 ( )
zzyyxxzyx

TTTwTvTuT ++=++ α  (3) 

In the above equations, u, v and w indicate the velocity components in the x, y and 

z directions, T denotes the temperature, and ρ, ν and α denote the density, kinematic 

viscosity and thermal diffusivity of the fluid, respectively. Assuming zero slip on 

the disk and zero shear stress on the film surface, the boundary conditions are: 

 0,0,, ===Ω=Ω−= zTTwxvyu
w

at  (4a) 

 tzppTTWwvu
zz

===−=== at
00

,,,0,0  (4b) 

 

Fig. 1. Schematic diagram of the problem 

Wang [7] introduced the following similarity transformation: 

 ,/)(sin)()( Ω+′Ω+Ω−= ηβηη kgfxygu  (5a) 

 ,/)(sin)()( Ω+′Ω+Ω= ηβηη sgfyxgv  (5b) 



O. Güngör, C. Arslantürk 18 

 ),(2 ην fw Ω−=  (5c) 

where 

 ./νη Ω= z  (5d) 

Continuity Eq. (1) is satisfied automatically with this similarity transformation. 

Eqs. (2a) and (2b) can be defined in terms of new variables as follows: 

 ,02)(
22

=′′++′−′′′ ffgff  (6a) 

 ,022 =′+′−′′ gffgg  (6b) 

 ,012 =+′++′−′′ kfsgfkk  (6c) 

 .02 =′+′−−′′ sffsgks  (6d) 

If the temperature is considered to be the function of z only, the Eq. (3) is 

 .0Pr2 =′+′′ θθ f  (6e) 

where Pr = ν/α is the Prandtl number. The boundary conditions for the new varia-

bles are:  

 ,0)(,0)0(,0)0( =′′=′= δfff  (7a) 

 ,0)(,1)0( =′= δgg  (7b) 

 ,0)(,0)0( =′= δkk  (7c) 

 ,0)(,0)0( =′= δss  (7d) 

 ,1)(,0)0( == δθθ  (7e) 

After the flow field is found, desired quantities of the fluid can be calculated. 

Firstly, the pressure distribution in the film can be obtained by integrating the  

Eq. (2c): 

 2 2

0

1
( ) ( ) ( ) cos ( ) .

2
=

  ∂ ∂  = + − − − − −    ∂ ∂   z t

w w
p z p v w z w t g z t

z z
ρ β  (8) 

If the net forces on the per unit area in the x and y directions are normalized by, 

βΩνρ sin/g , they are equal to k΄(0) and s΄(0) values, respectively. The net flow 

rates for per unit width in x and y directions are represented by 
0

( )k d
δ

η η∫  and 

0

( )s d
δ

η η∫  integrals, respectively. 



Variation of parameters method for a three-dimensional problem of condensation film … 19

3. Variation of parameters method for nonlinear problems 

The method of variation of parameters is generally used to solve nonhomogene-

ous linear differential equations [21]. However, it is known from the literature that 

it can also be used to solve nonlinear equations [14-20]. In linear equations, while 

the term disrupting homogeneity is only the function of the independent variable, 

in nonlinear equations, this term is also the function of the dependent variable. 

Consider the following n order nonlinear differential equation 

 ),,,,,( )1(  nXfL  ⋯  (9) 

where L is a linear operator from n order. The homogeneous solution of the Eq. (9) 

could be expressed as follows: 

 1 ,1 2 ,2 ,( ) ( ) ( ) ...... ( )   c c c n c nX c X c X c X     (10) 

where c1, c2, …, cn are integration constants and Ψc,1, Ψc,2  and Ψc,n are linear inde-

pendent solutions of the homogeneous equation. It is desirable that Eq. (9) has  
a particular solution as follows: 

 )()()()()()()( ,2,21,1 XXvXXvXXvX ncnccp   ⋯  (11) 

The solution procedure to be applied for the nonlinear Eq. (9) is same for the linear 

equations: 

 )()()( XXX pc    (12) 

In Eq. (11), the particular solution functions are found given as: 
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In the above equation, W is the Wronskian of independent solutions of the homo-

geneous equation 
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where 
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If f in Eq. (13a) depends only on Ψ and X, although the method requires an itera- 

tive approach and numerical integration, the solution can be considered exact  

because numerical integration can be performed to an arbitrary degree of precision. 

If f is also the function of derivatives of Ψ, the solution cannot be regarded as  

an exact solution [18], since these derivatives must be used approximately by using 

finite difference equations. 

4. Numerical solution by variation of parameters method 

Equations (6) can be defined as follows without taking the highest order deriva-

tive term into consideration: 

 ),,,( gfgfFf ′′=′′′  (14a) 

 ),,,( gfgfGg ′′=′′  (14b) 

 ),,,,,( kfskgfKk ′′=′′  (14c) 

 ),,,,,( sfskgfSs ′′=′′  (14d) 

 Pr),,( θΘθ ′=′′ f  (14e) 

In the above equations, the functions F, G, K, S, and Θ become: 

 ffgfF ′′−−′= 2)(
22  (15a) 

 gffgG ′−′= 22  (15b) 

 12 −′−−′= kfsgfkK  (15c) 

 sffsgkS ′−′+= 2  (15d) 

 θΘ ′−= fPr2  (15e) 

Equations (14) are transformed into equations similar to Eq. (12) according  

to the variation of parameters method described in the previous section. Here,  

this procedure will only be explained for the Eq. (14a), and only results will be  

presented for other equations. 

The homogeneous solution of the Eqs. (14a) are 

 32
2

13,32,21,1 )()()()( cccfcfcfcf
cccc

++=++= ηηηηηη  (16) 

where c1, c2 and c3 are integration constants and f
c,1,  fc,2 and  f

c,3 are linear independ- 

ent solutions of the above homogeneous equation. It is desirable that Eq. (14a) has 

a particular solution as follows: 
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The solution of the nonlinear Eq. (14a) is the sum of homogeneous and particular 

solutions. 
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Equations (13a)-(13c) and the particular solution functions are given by 
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Therefore, 
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using the boundary conditions given by (7a), c1, c2 and c3 constants are as follows: 
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f function is obtained by substituting the functions in Eqs. (19) and c1, c2 and c3 

constants in Eq. (21) into Eq. (20). 
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Because the f appears on both sides and g the right side of the Eq. (22a), an iterative 

approach is required for the solution. An initial guess for the f and g functions 

plugged into the right side of the Eq. (22a) 
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Here, f
n
 is the nth approximation or iteration of f and fn+1 is the next or n + 1 itera-

tion of f and n ≥ 0. For the numerical solution of the integrals in the Eqs. (22b), the 

problem region (0,δ) is divided into M sub-region. Assigning an initial guess vector 

for each of the functions, the right sides of the equations are computed by the trap-

ezoidal rule. The derivatives in Eq. (22b) are used approximately by using  

finite difference equations. The relative approximate error between the vectors  

representing the new values of the functions and the guess vectors is computed  

and when the error reaches the desired tolerance value, the iteration is terminated. 

As can be seen from Eqs. (22a), the variation of parameters method reduces  

the solution of a nonlinear set of differential equations to numerical integration  

solution. 

The same procedure is applied to Eqs. (14b)-(14e) and the other functions are 

obtained as follows: 
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5. Results and discussion 

In this part of the paper, firstly the convergence and accuracy of the solution  

obtained by VPM is investigated. The solution of the nonlinear ordinary differen-

tial equation set given by (22a)-(22e) is obtained iteratively. The integrals in these 

equations have been solved numerically with the trapezoidal rule by dividing the 

problem region into the M sub-region. The minimum number of sub-regions re-

quired for a solution independent of the number of sub-regions has been identified 

by examining Table 1. In Table 1, it is seen that values of f, g, k and s functions  

on surface of the film and the derivative values of these functions on the surface  

of disk change depending on the number of sub-regions used in the solution. For all 

cases from Table 1, it is seen that the value of M = 200 is sufficient to obtain  

a solution independent of the number of sub-regions. However, for more reliable 

solutions, numerical integrals have been calculated with M = 500 sub-region  

number in all solutions. 
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Table 1. Effect of the number of sub-region on the convergence of the solution for δ = 1.0 

M f(δ) g(δ) k(δ) –s(δ) f ''(0) –g'(0) k'(0) –s'(0) 

10 0.2131070 0.7756361 0.4257919 0.1360428 0.7000229 0.3761105 0.8896359 0.2302441 

20 0.2134697 0.7751300 0.4261382 0.1359606 0.7040528 0.3743158 0.8904792 0.2279164 

50 0.2135597 0.7749763 0.4262278 0.1359318 0.7052161 0.3737458 0.8907142 0.2272071 

100 0.2135717 0.7749535 0.4262400 0.1359272 0.7053842 0.3736589 0.8907477 0.2271013 

150 0.2135739 0.7749492 0.4262422 0.1359264 0.7054154 0.3736425 0.8907539 0.2270814 

200 0.2135746 0.7749477 0.4262430 0.1359260 0.7054263 0.3736367 0.8907561 0.2270744 

250 0.2135750 0.7749470 0.4262433 0.1359259 0.7054314 0.3736340 0.8907571 0.2270711 

300 0.2135752 0.7749466 0.4262435 0.1359258 0.7054342 0.3736325 0.8907576 0.2270694 

350 0.2135753 0.7749464 0.4262436 0.1359258 0.7054358 0.3736317 0.8907579 0.2270683 

400 0.2135754 0.7749462 0.4262437 0.1359257 0.7054369 0.3736311 0.8907581 0.2270676 

450 0.2135754 0.7749461 0.4262438 0.1359257 0.7054376 0.3736307 0.8907583 0.2270671 

500 0.2135754 0.7749460 0.4262438 0.1359257 0.7054382 0.3736304 0.8907584 0.2270668 

 
Figure 2 shows how the dimensionless temperature distribution converges from 

the initial guess to the solution. In this example, M = 500 was taken and conver-

gence was achieved in 136 iterations. 

In order to investigate the accuracy of the VPM solution, a nonlinear set of  

differential equations was also solved numerically by the Matlab “bvp4c” solver. 

The numerical solution (NUM) and VPM solutions are represented in Table 2.  

The table shows that there is an excellent agreement between the results. 

 

 
Fig. 2. Convergence of non-dimensional temperature profile (Pr = 100, δ = 1.0) 
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The results obtained by Rashidi and Dinarvand [8] with the Homotopy Analysis 

Method (HAM), the results obtained by Rashidi and Mohimanianpour [10] with  

the Differential Transform Method (DTM), the results by Hassan and Rashidi [11] 

and VPM results and numerical results are compared in Table 3. In the Table, it is  

observed that particularly the results of OHAM, DTM, VPM and numerical solu-

tion are in consistence. 

Table 2. Comparison of VPM and numerical solution for f, g, k and s functions for δ = 0.5 

η 
f g k –s 

VPM NUM VPM NUM VPM NUM VPM NUM 

0 0.000000 0.000000 1.000000 1.000000 0.000000 0.000000 0.000000 0.000000 

0.1 0.002247 0.002247 0.992286 0.992286 0.044418 0.044418 0.003932 0.003932 

0.2 0.008328 0.008328 0.985418 0.985417 0.078877 0.078877 0.007431 0.007432 

0.3 0.017266 0.017266 0.980055 0.980054 0.103421 0.103421 0.010163 0.010163 

0.4 0.028098 0.028098 0.976660 0.976659 0.118102 0.118102 0.011891 0.011891 

0.5 0.039873 0.039873 0.975501 0.975500 0.122980 0.122980 0.012481 0.012481 

Table 3. Comparison of the results of VPM with other methods in the literature for δ = 1.0 

 η HAM [8] OHAM [18] DTM [10] VPM NUM 

f(η) 

0.2 0.012675 0.012800 0.012824 0.012824 0.012824 

0.4 0.045894 0.046281 0.046535 0.046535 0.046535 

0.6 0.093341 0.094217 0.094762 0.094763 0.094762 

0.8 0.149674 0.151124 0.152032 0.152032 0.152032 

1.0 0.210237 0.212274 0.213575 0.213575 0.213575 

g(η) 

0.2 0.916605 – 0.926994 0.926994 0.926994 

0.4 0.843679 – 0.863125 0.863125 0.863125 

0.6 0.788272 – 0.814575 0.814575 0.814575 

0.8 0.754295 – 0.784796 0.784796 0.784795 

1.0 0.743051 – 0.774945 0.774945 0.774944 

k(η) 

0.2 0.168154 0.159275 0.158444 0.158444 0.158444 

0.4 0.296762 0.280230 0.278584 0.278584 0.278584 

0.6 0.386586 0.364424 0.362047 0.362047 0.362047 

0.8 0.438927 0.413499 0.410583 0.410583 0.410583 

1.0 0.455797 0.429372 0.426244 0.426243 0.426243 

–s(η) 

0.2 0.037467 0.044681 0.044332 0.044332 0.044332 

0.4 0.070290 0.083628 0.082971 0.082971 0.082971 

0.6 0.112194 0.113081 0.112194 0.112194 0.112194 

0.8 0.130038 0.131057 0.130038 0.130038 0.130038 

1.0 0.135926 0.136982 0.135926 0.135925 0.135925 
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Table 4 shows the effect of the Prandtl number on the non-dimensional temperature 

distributions. From the table, it shows that the VPM agree excellently with numeri-

cal solutions and Akbari_Ganji Method [13]. 

Table 4. Comparison of the non-dimensional temperature distributions obtained by AGM, 

VPM and numerical solution when δ = 0.5 

Pr = 0.700 Pr = 5.00 Pr = 100 

η AGM [13] VPM NUM VPM NUM VPM NUM 

0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

0.1 0.200554 0.200554 0.200554 0.203951 0.203951 0.273954 0.273954 

0.2 0.401036 0.401036 0.401036 0.407379 0.407379 0.534310 0.534310 

0.3 0.601278 0.601278 0.601278 0.609074 0.609074 0.754161 0.754160 

0.4 0.801032 0.801032 0.801032 0.807288 0.807288 0.910224 0.910224 

0.5 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 

 

After proving the accuracy and convergence of the solution obtained with VPM, 

the flow of condensing fluid and the variation of the heat transfer with some  

parameters will be investigated. 

 In Figure 3, the change of non-dimensional radial velocity profiles versus simi-

larity parameter is shown. In Figure 4, the change of k'(0) and –s'(0), representing 

the non-dimensional shear stresses in the x and y directions; with dimensionless 

film thickness is shown. It can be seen from Figure 3 that k'(0) increases linearly  

as thickness increases, and the increase is also larger than –s'(0). 

 

 
Fig. 3. The change of non-dimensional radial velocity profiles and similarity parameter 

for δ = 1.0 

In Figure 5, f '' (0) and –g'(0) are expressed as a function of film thickness. The 

function f ''(0), which has the same values as the results given by Wang [7], passes 

from the maximum value of 0.7085 in δ =
 
1.08 value and is asymptote to the value 
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of 0.51023. The function g'(0) passes from a minimum in δ = 2.82 value and is  

asymptote to the value of 0.6159. 
 

 
Fig. 4. As a function of the dimensionless film thickness, k'(0) and –s'(0) being 

the dimensionless shear stresses in the x and y directions 

 
Fig. 5. f ''(0) and –g'(0) initial values for the rotating flow 

 
Fig. 6. The change of normalized temperature profiles with similarity parameter for δ = 1.0 
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Fig. 7. The change of Nusselt number with dimensionless film thickness 

for various Prandtl numbers 

The normalized temperature profile for different Prandtl numbers are illustrated 

in Figure 6. The value of Prandtl number ranges from about zero for liquid metals 

to 0.7 for water, and 110 for some specific liquid metals. Figure 7 shows the 

change in the Nusselt number with dimensionless film thickness. Although the  

effect of the Nusselt number is not sensible in small Prandtl numbers, it increases 

with the increase in thickness; ultimately, in thicknesses of about zero, it reaches  

a maximum of 1. 

6. Conclusions 

In this paper, a three-dimensional condensation problem on an inclined rotating 

disk was taken into consideration. The problem, expressed as a set of partial differ-

ential equations, was transformed into a set of a nonlinear ordinary differential 

equations via a similarity transformation given by Wang [7]. This set of ordinary 

differential equation is solved with the variation of parameters method (VPM) 

which is mostly used to solve nonhomogeneous linear differential equations but 

can also be used to solve nonlinear differential equations. This is the first study 

where a nonlinear condensation problem of VPM was used to solve the mathemati-

cal model. In order to study the validity of VPM solutions, the problem was also 

solved numerically with the MATLAB bvp4c solver. The comparisons showed that 

VPM solutions were completely consistent with the results of OHAM, AGM, 

HPM, DTM and the numerical solution. 
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