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Abstract. In the paper, we investigate multi-server queueing systems with demands of ran-

dom space requirements (volumes), in which buffer space is limited by constant value and 

queueing ore (and) service time are limited by exponentially distributed random variables. 

For such systems, stationary demands number distribution and loss probability are deter-

mined. Some numerical results are attached as well.  

 

MSC 2010: 90B22, 60K25, 68M20 

Keywords: total demands volume, system buffer capacity, loss probability, Stieltjes  

convolution 

1. Introduction  

Queueing systems with demands of a random space requirement (or random 

volume) [1, 2] are the generalization of the classical queueing models [3, 4]. They 

can be used to model and solve various practical problems in the design of comput-

er and communication systems (see e.g. [1, 2, 5]). In particular, such models can be 

applied to buffer space volume determination in the nodes of computer and com-

munication networks. The main proposition of the theory of such systems [1]  

is the heterogeneity of demands served by the system with respect to their random 

volumes, in other words, we propose that different demands need different memory 

size (volume) during their presence in the system.  

In the paper, we investigate queueing systems in which demands are also  

“impatient”, i.e. they can leave the system during their waiting in the queue or 

(and) during their servicing. In the classical queueing theory (for demands without 

random volume), systems with times limitations were investigated e.g. in [4, 6].  

In particular, in [6] queueing systems with random limitations of queueing and (or) 
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service time were investigated. In the paper [7], the system with random volume 

demands, deterministically limited total demands volume and deterministically 

limited queueing or sojourn time were analyzed. 

 In this paper, we investigate a similar system, but the difference is that, in the 

system under consideration, queueing and (or) service time are limited by exponen- 

tially distributed random variables. For example, we have a situation when a demand 

contains some information that can be grown old fore random reasons, and therefore 

it must be eliminated from the system.  

The paper is organized as follows: In the Section 2, we give the mathematical 

description of the model and introduce some necessary notations. In Section 3, we 

introduce the functions describing the system behavior and define an appropriate 

Markov process. In Section 4, we build a system of differential equations for  

the function introduced in Section 3 and give its steady-state solution, from which 

the steady-state demands number distribution is determined. In Section 5, we de-

termine the loss probability for the system under consideration. Section 6 contains 

examples of numerical results illustrating theoretical formulas, and the last Section 7 

presents conclusions and final remarks.  

2. Model description  

We consider a queueing system of M/M/n/m ∞≤ -type, in which all demands  

are characterized by some random volume (or space requirement) ζ , where ζ  is  

a non-negative random variable that doesn’t depend on the volumes of other  

demands and the epoch of the demand’s entering to the system. Denote by 

}{)( xxL <= ζP  the distribution function of the random variable .ζ  Let )(tσ  be the 

total demands volume or the sum of all volumes of demands present in the system 

at time instant t. The values of the random process )(tσ  are bounded by the con- 

stant value V ( 0>V ) named the system buffer capacity. Let )(tη  be the number of 

demands present in the system at time instant t.  

If a demand of volume x arrives to the system at epoch t when there are 

mnt +<
−

)(η  other demands in it and ,)( Vxt ≤+
−

σ  we have ,)()( xtt +=
−

σσ  

1)()( +=
−

tt ηη  and the demand is accepted to the system. In opposite case 

( Vxt >+
−

)(σ ), the demand will be lost without influence to future system behav-

ior. In this case, we have ),()(
−

= tt σσ  ).()(
−

= tt ηη  The arriving demand will be 

lost also if there are nm +  other demands at the epoch t.  

Demands accepting to the system are served in accordance to FIFO discipline. 

But their queueing time and (or) sojourn time are limited by some random vari-

ables having an exponential distributions with parameters ν  and ,α  respectively, 

i.e. demands can leave the system (be lost) during waiting in the queue or servic- 

ing. In particular, if only queueing time is limited in the system, we have ;0=α   
if only service time is limited, we have ;0=µ  and if sojourn time is limited in  

the system, we obtain .αν =  Let a be the parameter of demands enter flow, µ  be 
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the parameter of service time (we assume that service time doesn’t depend on the 

demand volume). We also assume that the traffic load of the system )](/[ αµρ += na  

is finite ( ∞<ρ ). 

Our aim is the determination of the steady-state distribution of number of  

demands present in the system and the demand loss probability.  

3. Process and characteristics 

The behavior of the system under consideration can be described by the follow-

ing Markov random process 

 )),(...,),(),(( )(1 ttt
tη

σση  (1) 

where )(tjσ  is the volume of the j-th demand presenting in the system at time  

instant t. It is clear that .)()(
)(

1

∑
=

=

t

k

j tt

η

σσ  

The process (1) we shall characterize by the functions having the following 

probability sense: 

 };0)({)(
0

== ttP ηP  (2) 

 ;,0},)({)( mnkkttPk +=== ηP  (3) 

 .,1},)(,)({),( mnkytkttyGk +=<== σηP  (4) 

It is clear that, for ,,1 mnk +=  we have ).,()( tVGtP kk =  

4. Steady-state distribution of demands present in the system 

It can be easily shown that the functions (2)-(4) satisfy the following Kolmo-

gorov-type equations (see also [8] for comparison): 

 );()()()(
)(

10

0
tPtPVaL

dt

tdP
αµ ++−=  (5) 

 );()(2)()()(),()()(
)(

21

0

10
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dt

tdP
V

αµαµ +++−−−= ∫  (6) 
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 (7) 
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 ).(])([)(),(
)(

0
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tPmnydLtyVGa

dt

tdP
mn

V

mn

mn

+−+

+

++−−= ∫ ναµ  (9) 

Assume that at least one of the values m and V is finite. Then, we have obviously 
that σσηη ⇒⇒ )(,)( tt  when ∞→t  in the sense of a weak convergence, where 

the random variables η  and σ  are the steady-state number of demands present  

in the system and their total volume, consequently. So, the following finite limits 

exist:  

 ;,0),(lim}{ mnktPkp k
t

k +====
∞→

ηP  (10) 

 .,1),,(lim},{)( mnktyGykyg k
t

k +==<==
∞→

σηP  (11) 

We have evidently )(Vgp kk =
 for .,1 mnk +=  

It follows from the equations (5)-(9) that the steady-state characteristics (10) 

and (11) satisfy the following equations: 

 ;)()(0
10
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Introduce the following notation for the Stieltjes convolution of the distribution 

function )(xL : ,1)(
)0(

* ≡yL  ∫ −=
−

y

kk
xdLxyLyL

0

)1(
*

)(
* ),()()(  ...,2,1=k . 

Then, by direct substitution, we can easily show that the solution of the Eqs. 
 

(12)-(16) has the form: 
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where )].(/[ αµνβ += n  

We have from the relations (17) that 
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The probability 
0

p  can be determined from the normalization condition 

,1
0
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+
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p  whereas we obtain: 
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5. Loss probability 

Let A be the event that an arbitrary arriving demand is accepted to the system 
 

and served completely and K be the mean number of busy servers in steady state. 

We have evidently that ,

11

∑∑
+

+==

+=

mn

nk

k

n

k

k pnkpK  and we obtain for probability of the 

event A: ./}{ aKA µ=P  Then, the probability that an arbitrary demand is lost at its 

arriving epoch or is not served completely can be determined as =lossP  

.1}{1
a

K
A

µ
−=−= P  
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6. Numerical examples 

In this section, we present numerical examples illustrating theoretical results. 

More precisely, we present how the loss probability 
lossP  depends on the buffer  

capacity V and the parameters .,, βαµ  Assume that the volumes of entering  

demands are exponentially distributed with parameter 1=f  and service time has  

an exponential distribution with parameter .µ  Consider three cases of the consid-

ered system when 1=n  (a single-server system).  

 

    

 Fig. 1. Loss probability, 1== nm , 0=α  Fig. 2. Loss probability, 1=n , 3=m , 0=α  

   

 Fig. 3. Loss probability, 1== nm , 0=ν  Fig. 4. Loss probability, 1=n , 3=m , 0=ν  
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 Fig. 5. Loss probability, 1== nm , αν =  Fig. 6. Loss probability, 1=n , 3=m , αν =  

In the first case (Figs. 1 and 2), only the queueing time is limited, i.e. we have 

.0=α  Assume that the system buffer capacity V takes the values from 0 to 10,  

and the parameter ν  takes the values from 0 to 2. Furthermore, when 1=a  and 

5.0=µ , then νβ 2=  and 2=ρ . For example, if there is one waiting place in the 

queue ( 1=m ), then, for 1 = ν  and 2, = V  the loss probability 
lossP  is equal to 

0.68765 (Fig. 1). If 3=m , then 701542.0=lossP  (Fig. 2). 

In the second case, only service time is limited (Figs. 3 and 4), then we have 

.0=ν  Assume that the system buffer capacity V takes the values from 0 to 5, and 

the parameter α  takes the values from 0 to 2. Furthermore, when 1=a  and 

5.0=µ , then 0=β  and )5.0/(1 αρ += . For example, if the queue size is 1 ( 1=m ), 

for 2=α  and V = 1, the loss probability =lossP  0.898072 (Fig. 3). If 3=m , then we 

have =lossP  0.8985 (see Fig. 4). 

In the third case, the sojourn time of demand in the system is limited, then we 

assume αν =  (Figs. 5 and 6). Assume that V takes the values from 0 to 5 and α  

takes values from 0 to 2. In addition, when 1=a  and 5.0=µ , we have 

)5.0/( ααβ +=  and )5.0/(1 αρ += . For example, if there is one waiting place  

in the queue ( 1=m ), for 2=α  and ,1=V  we have =lossP  0.898516 (Fig. 5).  

If 3=m , then =lossP  0.898603 (Fig. 6). 

7. Conclusions 

In the paper, we consider a multiline queueing system with random time limita-

tions and limited buffer space. The determination of the steady-state distribution  

of number of demands present in the system and the demand loss probability  
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are presented. Some special cases of the system under consideration are provided 

with numerical calculations in Maple. In any case, when the number of waiting 

places increases, of course the loss probability of demand also increases. This model 

shows the loss probability of demand (see Figs. 1-6). The results obtained in the 

paper can be used for estimating of total demands volume characteristics in the nodes 

of computer and telecommunication networks.  
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