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Abstract. In this paper, explicit Improved Runge-Kutta (IRK) methods with two, three
and four stages have been analyzed in detail to derive the error estimates inherent in them
whereas their convergence, order of local accuracy, stability and arithmetic complexity have
been proved in the relevant literature. Using single and multivariate Taylor series expansion
for a mathematical function of one and two variables respectively, slopes involved in the
IRK methods have been expanded in order to obtain the general expression for the leading
or principal term in the local truncation error of the methods. In addition to this, principal
error functions of the methods have also been derived using the idea of Lotkin bounds
which consequently gave rise to the error estimates for the IRK methods. Later, these error
estimates were compared with error estimates of the two, three, and four-stage standard
explicit Runge-Kutta (RK) methods to show the better performance of the IRK methods
in terms of the error bounds on the constant step-size h used for solving the initial value
problems in ordinary differential equations. Finally, a couple of initial value problems have
been tested to determine the maximum absolute global errors, absolute errors at the final
nodal point of the integration interval and the CPU times (seconds) for all the methods
under consideration to get a better idea of how the methods behave in a particular situation
especially when it comes to analyzing the error terms.
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1. Introduction

A number of physical laws are exressed in terms of mathematical models that are
based on different kinds of differential equations. Such models form an important
part for the study of applied and computational mathematics. Differential equations
play a vital role in the field of science and engineering. Applied mathematicians,
computational analysts and researchers in the fields are the people who come into
contact with such mathematical models more frequently than anyone else. Popula-
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tion growth or decay in population dynamics, the Lorentz attractor model in weather
prediction, mass-spring system in physics, simple and forced pendulum in mechanics,
kinetic reactions in chemistry, formulation of tissues in human body in physiology,
the speed of efflux in fluid dynamics, flow of current in electric circuits, change in the
Gross Domestic Product (GDP) over time in economics, displacement of a beam in
civil, agent-based fabric modeling in textile, heating and cooling of computer hard-
ware in computer science, prediction of structure failures and other examples are all
the indispensable applications of differential equations. These and many other appli-
cations of differential equations can be found in [1–8]. Thus, differential equations
are the useful tools to model the complex behavior of the physical world. Most of
these equations are too difficult to solve exactly. In other words, their closed form
solution is not possible to obtain where the nonlinearilty of the equations constitutes
the major reason. There are many nonlinear ordinary differential equations whose ex-
act solution cannot be found using existing analytical techniques. On the other hand,
most of the linear equations can be solved in terms of elementary mathematical func-
tions but not all. In any case, numerical methods come into play to get approximate
solution of every type of important equation and the task has become comparatively
easy after the advent of digital computers.

With the passage of years, several numerical methods have been designed because
one method cannot serve the whole purpose. In the history of these methods, the
methods called single-step linear explicit RK, multi-step explicit Adams-Bashforth,
multi-step implicit Adams-Moulton, Backward Differentiation Formulae, Parallel-in-
time methods and few more are known as the standard/classical numerical methods
to solve the initial value problems in ordinary differential equations as can be found
in [9]. Among the family of these classical methods, the fourth order explicit linear
RK method is quite famous [10] for having only four slope evaluations per integra-
tion step in contrast to higher order methods which use more slope evaluations per
integration step than their order of convergence as proved in [11, 12]. Further study
on the analysis and importance of these RK methods is found in the work of Hull
et al. [13]. It is due to this reason, Max Lotkin [14] provided a better estimate of the
local error inherent in the classical RK method. In an effort of reducing slope evalu-
ations, authors in [15–17] proposed improved versions of the classical RK methods.
Nonetheless, most of these methods were employed on an autonomous type of initial
value problems whereas the IRK methods with two, three and four stages devised
in [18] could be used for both autonomous and non-autonomous scalar and vector-
valued initial value problems thereby getting much attention of the researchers inter-
ested in the field of computational mathematics [19]. While maintaining the order
of convergence p with additional an advantage of employing p−1 slope evaluations
per integration step in case of at least two-stage IRK3-2 methods considered in this
paper, they perform much better than most of the existing classical RK methods hav-
ing same number of slope evaluations per integration step. Since these methods may
be used to solve various problems of practical interest in applied and computational
mathematics, it seems important to have an estimate of the local truncation error and
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bound for this error inherent to these methods. Like numerical accuracy of classi-
cal RK methods, the third and fourth order IRK methods are explored in detail for
their local truncation errors and the numerical accuracy derived in terms of the error
bounds.

The principal goal of the present paper is to get such estimate of the error and to
derive a bound for the constant step-size h required by the IRK methods.

2. Material and methods

Linear explicit classical RK methods have advantageously been used to solve ini-
tial value problems in ordinary differential equations of the form:

dy
dx

= f (x,y); y(x0) = y0, y, f ∈ R, x ∈ [x0,xn] ∈ R (1)

where it is assumed that the problem is well-posed, that is, it has a unique contin-
uously differentiable solution, say y(x). The notation yn has been used to show the
approximate solution to the exact solution y(xn) at the nodal points xn = x0+nh; n=
= 0,1,2, . . . ,N, where h=(xn− x0)

/
N is called the constant step-size. Moreover, the

convergent Taylor series expansion of the exact solution y(x) of (1) assumed to be
smooth about x = a as shown below is required to agree with the IRK methods with
two, three and four stages up to the terms in h3 and h4 respectively:

y(x+h) = y(x = a)+h f +
1
2!

h2 ( fx + f fy)+
1
3!

h3 ( fxx +2 f fxy + f 2 fyy + f f 2
y + fx fy

)
+

1
4!

h4
(

fxxx + f 3 fyyy + f f 3
y + fx f 2

y + fxx fy +5 f fy fxy +4 f 2 fy fyy

+3
(

f fxxy + f 2 fxyy + fx fxy + f fx fyy
) )

(2)

+
1
5!

h5


13 f fx fy fyy +3 f 2

x fyy +12
(

f 2 fxy fyy + f fx fxyy
)

+7
(

fx fy fxy + f 3 fy fyyy
)
+11 f 2 f 2

y fyy +9
(

f fy fxxy + f f 2
y fxy

)
+15 f 2 fy fxyy +4

(
f fxx fyy + f fxxxy + f 3 fxyyy + f 3 f 2

yy + fxx fxy
)

+8 f f 2
xy +6

(
f 2 fx fyyy + f 2 fxxyy + fx fxxy

)
+ f 4 fyyyy + f f 4

y
+ fx f 3

y + fxx f 2
y + fxxx fy + fxxxx

+O
(
h6)

Generally, y(x)=
∞

∑
n=0

y(n) (a)
n!

(x−a)n+Rn (3)

where the remainder term Rn→ 0 as n→ ∞ for all x in the interval of convergence.
This Taylor series has given rise to the standard RK methods with s number of slope
evaluations per integration step and written from [9] as follows:
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yn+1 = yn +h
s

∑
i=1

biki

k1 = f (xn,yn)
k2 = f (xn + p2h,yn +hq21k1)
...

ks = f

(
xn + psh,yn +h

s−1

∑
j=1

qs jk j

)


(4)

2.1. General form of the IRK methods

The authors in [20] have described their proposed IRK methods with s number of
stages having order of convergence either s or s+1 depending upon the higher power
of the step-size h to which the slopes involved in the methods are Taylor expanded as
given below:

yn+1 = yn +h

[
b1k1−b−1k−1 +

s

∑
i=2

bi (ki− k−i)

]
k1 = f (xn,yn) ; k−1 = f (xn−1,yn−1)

ki = f

(
xn + cih,yn +h

i−1

∑
j=1

ai jk j

)

k−i = f

(
xn−1 + cih,yn−1 +h

i−1

∑
j=1

ai jk− j

)
1≤ n≤ N−1, 2≤ i≤ s for c2, · · · ,cs ∈ [0,1]

and ci =
i−1

∑
j=1

ai j



(5)

From this general structure of the IRK methods, two, three and four-stage IRK
methods have been chosen in the present study for finding the error estimates and
bounds inherent to them.

An accurate estimate of the error has been obtained by a comparison of the exact
coefficient 1

/
4! f ′′′ of h4 of the Taylor expansion with the approximate one origi-

nating from (5) two and three-stage IRK methods, that is, IRK3-2 and IRK3-3 re-
spectively. Suppose the IRK3-2 and IRK3-3 have been expressed in the following
form:

y(x0 +h) = y0 +C1h+C2h2 +C3h3 +C4h4 + · · ·

where Ci =
1
i!

y(i)0 , i = 1,2,3, and C4 + ε = 1
/

4! f ′′′.
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All the slopes involved in IRK3-2 have now been Taylor expanded and consid-
ering third order accuracy of the method IRK3-2, terms up to the h3 were canceled
when compared with Taylor series given by (2). Thus, we have the following leading
term of the local truncation error of the method concerned:

εIRK3−2 =
1
4!

f ′′′− 1
2

b2c2
2

[
2
(

f fy fxy + f 2 fy fyy + f fx fyy + fx fxy
)

+3
(

f 2 fxyy + f fxxy
)
+ f 3 fyyy + fxxx

]
(6)

+
1
6
[3b2c2 − (b−1 +b2)]

[
5 f fy fxy +3

(
f fx fyy + fx fxy + f 2 fxyy + f fxxy

)
+ f 3 fyyy + fxxx + f f 3

y + fx f 2
y + fxx fy +4 f 2 fy fyy

]
Similarly, all the slopes involved in the IRK3-3 method have been Taylor ex-

panded and considering third order accuracy of the method, terms up to h3 were once
again canceled when compared with Taylor series given by (2). Thus, we have the
following leading term of the local truncation error of the method given by IRK3-3:

εIRK3−3 =
1
4!

f ′′′− 1
2

b3

[ (
f 3 fyyy + f 2 fxyy +2 f 2 fy fyy +2 f fx fyy

)(
a2

32 +a2
31 +2a31a32

) ]
−1

6
(b2 +b3)

[
5 f fy fxy +3

(
f fx fyy + f 2 fxyy + fx fxy + f fxxy

)
+ f 3 fyyy + f f 3

y + fxx fy + fx f 3
y + fxxx +4 f 2 fy fyy

]
+b3 (a31 +a32)

[ 1
2
(

f 3 fyyy + f f 3
y + fx f 2

y + fxx fy + f fxxy +3 f fx fyy
)

+2 f fy ( fxy + f fyy)+ f 2 fxyy + fx fxy

]
−1

2
b3c2

3 ( f fxxy + fxxx) (7)

−b3c3 (a31 +a32)
(

fx fxy + f 2 fxyy + f fxxy + f fy fxy
)

−1
2

(
1
3

b−1−b2c2

)[
f 3 fyyy + f f 3

y + fx f 2
y + fxx fy + fxxx +3 f 2 fxyy

+3( fx fxy + f fxxy + f fx fyy)+5 f fy fxy +4 f 2 fy fyy

]
+

1
2

b3c3
[

f 2 fxyy + fx fxy + f fy fxy + fxxx +2 f fxxy
]

−1
2

b2c2
2

[
f 3 fyyy +3 f fxxy + fxxx +2

(
f 2 fy fyy + f fx fyy + f fy fxy

+ f 2 fxyy + fx fxy

)]
−b3a32c2

[
fx fxy + f f 3

y + fx f 2
y + fxx fy + f fx fyy +3 f fy fxy +2 f 2 fy fyy

]
Whereas the leading term of the local truncation error of IRK4-4 method has not

been mentioned for the sake of brevity. However, the leading terms of the local
truncation error for the standard RK methods with two and three stages-excluding
four-stage RK for the same reason - have been determined below for the comparison
purpose later:

εRK2 =
1
3!

f ′′− 1
2

b2
[
q2

21 f 2 fyy + p2
2 fxx +2p2q21 f fxy

]
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εRK3 =
1
4!

f ′′′−



1
6
(
b2q3

21 +3b3q2
31q32 +3b3q31q2

32 +b3q3
31 +b3q3

32
)

f 3 fyyy +b3 p2 p3q32 fx fxy

+
1
2
(
b2 p2q2

21 +b3 p3q2
32 +2b3 p3q31q32 +b3 p3q2

31
)

f 2 fxyy

+
1
2
(
b2 p2

2q21 +b3 p2
3q31 +b3 p2

3q32
)

f fxxy +
1
6
(
b2 p3

2 +b3 p3
3
)

fxxx

+

(
1
2

b3q2
21q32 +b3q21q31q32 +b3q21q2

32

)
f 2 fy fyy +

1
2

b3 p2
2q32 fxx fy

+(b3 p2q21q32 +b3 p3q21q32) f fy fxy +
(
b3 p2q2

32 +b3 p2q31q32
)

f fx fyy



3. Error bounds

In order to achieve the required error bounds, the idea of Lotkin’s bound has been
used as explained in [14],

| f (x,y)|< M, | fy (x,y)|< L and
∣∣∣∣ ∂ i+ j f
∂xi∂y j

∣∣∣∣< Li+ j

M j−1 ;

where (i+ j) ≤ order of the method, L and M are positive constants independent of
x and y.
Employing the above idea, we can find a general expression for the Principal
Error Function (PEF) ψ (x,y) of IRK3-2, IRK3-3 and standard RK methods hav-
ing the same number of stages as that of corresponding IRK methods in the form
given below:

|ψ (x,y)|IRK3−2 =

∣∣∣∣13
12
− 13

3
(b−1 +b2)+b2c2 (13−8c2)

∣∣∣∣h4L3M

|ψ (x,y)|IRK3−3 =

∣∣∣∣∣∣∣∣∣
13
12
−3b3

(
a2

32 +a2
31 +2a31a32

)
− 13

3
(b2 +b3)+

10b3 (a31 +a32)−b3c2
3−4b3c3 (a31 +a32)−

13
3
(b−1−3b2c2)+3b3c3−

15
2

b2c2
2−10b3a32c2

∣∣∣∣∣∣∣∣∣h
4L3M

|ψ (x,y)|RK2 =

∣∣∣∣1−b2 p2q21−
1
2

b2
(
q2

21 + p2
2
)∣∣∣∣h3L2M

|ψ (x,y)|RK3 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
13
12
−



1
6

(
b2q3

21 +b3 (q31 +q32)
3
)
+b3 p2q32

(
q32 +q31 +

1
2

p2 + p3

)
+

1
2

(
b2 p2q2

21 +b3 p3 (q31 +q32)
2
)

+b3q21q32

(
1
2

q21 +q32 +q32 + p2 + p3

)
+

1
2
(
b2 p2

2q21 +b3 p2
3 (q31 +q32)

)
+

1
6
(
b2 p3

2 +b3 p3
3
)



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
h4L3M
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All of these derived local truncation errors and their respective principal error
functions of the RK and IRK methods have now been useful in comparing the error
estimates resulting from these methods. It may be noted that these principal error
functions specially for the IRK methods have not been previously discussed/derived
in the relevant literature.

4. Numerical experiments

In this section, the error bounds and the step-size error bounds have been derived
for all the IRK and the standard RK methods as mentioned above. In addition to
this, a few numerical experiments have also been included to compute the errors and
CPU time (seconds) values produced by the above all types of RK methods. Stability
regions and convergence analysis for some of the sets of these IRK methods can be
found in [18, 20] whereas the rest follows. In order to compare bounds obtained for
the local truncation error and step-size h required to employ the method, given below
is the Butcher form of some frequently used standard two, three and four stages RK
and IRK methods for comparison of their error estimates using couple of initial value
problems discussed next:

RK2
0 0 0
1/2 1/2 0

0 1

IRK3-2
0 0 0
1/2 1/2 0
−1/3 2/3 5/6

RK3
0 0 0 0
1/2 1/2 0 0
1 -1 2 0

1/6 2/3 1/6

IRK3-3
0 0 0 0
1/2 1/2 0 0
1 -1 2 0

1/6 2/3 1/6
RK4

0 0 0 0 0
1/2 1/2 0 0 0
1/2 0 1/2 0 0
1 0 0 1 0

1/6 1/3 1/3 1/6

IRK4-4
0 0 0 0 0
1/5 1/5 0 0 0
3/5 0 3/5 0 0
4/5 2/15 4/25 38/75 0
19/288 307/288 −25/14425/144 125/288

Thus, using the above mentioned Lotkin’s bounds, one can find the required error
bounds for the above tabultaed IRK and RK methods as summarized in the following
table; where tol shows the error tolerance set prior to solving the initial value prob-
lem. Values for L and M have chosen so that following conditions may be satisfied:
| f (x,y)|< M and to get appropriate value of L one may first compute the bounds Li, j
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Table 1. Bounds for standard RK and IRK methods

Methods
IRK3-2 RK2 IRK3-3 RK3 IRK4-4 RK4

Error Bound
8
3

h4L3M
1
2

h3L2M
985
648

h5L4M
1
12

h4L3M
1

95
h5L4M

1
36

h5L4M

Step-size Bound 4

√
3× tol

8×L3M
3

√
2× tol
L2M

5

√
648× tol

985×L4M
4

√
12× tol

L3M
5

√
95× tol

L4M
5

√
36× tol

L4M

for
∣∣∣∣ ∂ i+ j f
∂xi∂y j

∣∣∣∣, then take the following quantities:

Li+ j =max

[ (
Li+ j,0

/
M
)1/(i+ j)

,(Li+ j−1,1)
1/(i+ j) ,

(MLi+ j−2,2)
1/(i+ j) , · · · ,

(
Mi+ j−1L0,i+ j

)1/(i+ j)

]
,(i+ j)≤ order of the method

Then, we may substitute: L = max(L1,L2,L3,L4). At this stage, a couple of linear
and nonlinear initial value problems have been considered to determine the bounds of
the step-size length required for solving the problems. The error tolerance for these
problems has been set to ς = 10−10. Values for L and M have been chosen so that the
above conditions may be satisfied.

Problem 1.
dy
dx

= x+ y, y(0) = 0 , x ∈ [0,1] (L = M = 1)

Problem 2.
dy
dx

=−10(y−1)2 , y(0) = 2, x ∈ [0,1] (L = 20, M = 10)

Problem 3.
dy
dx

= 1+ y2, y(0) = 1, x ∈ [0,1] (L = M = 2)

Table 2. Bounds on step-size for standard RK and IRK methods for Problems 1-3

Order Stages Methods h≤ for IVP 1 h≤ for IVP 2 h≤ for IVP 3
3 2 IRK3-2 2.4746e-03 1.4714e-04 1.2373e-03

RK2 5.8480e-04 3.6840e-05 2.9240e-04
3 3 IRK3-3 9.1966e-03 5.2821e-04 4.5983e-03

RK3 5.8857e-03 3.4996e-04 2.9428e-03
4 4 IRK4-4 2.4862e-02 1.4280e-03 1.2431e-02

RK4 2.0477e-02 1.1761e-03 1.0238e-02

According to results listed in the Table 2, if the step-size bound of the IRK
methods with all the stages is compared with their classical RK counterpart
methods, then it is easy to observe that the former require considerably fewer it-
erations than the latter for the IVPs listed above. For example, for the first IVP,
one may use about 404 iterations for the IRK3-2 method as compared to 1710 iter-
ations required for the classical RK2. Secondly, 109 iterations are required by the
IRK3-3 method in comparison with the classical RK3 for which about 170 itera-
tions are necessary to get the same approximate results. Finally, the IRK4-4 method
needs 40 iterations in contrast to 49 by the classical RK4 and the same holds for rest
of the IVPs. Henceforth, the IRK methods perform far better than the classical RK
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methods having an equal number of stages when it comes to the error bounds of the
local truncation errors and bounds for the constant step-size as shown in the fore-
going discussion. Next, the errors and CPU times produced by the methods under
discussion have been computed in order to analyze the constant step size required to
approximate the solution of an initial value problem.
Problem 4. Let us consider a nonautonomous initial value problem taken from [21]
as given below:
dy
dx

=− xy
1+ x2 ; y(0) = 1, with exact solution y(x) =

1√
1+ x2

.

The Tables 3, 4 and 5 show that the maximum absolute global error, absolute error
at the final nodal point of the integration interval [0,1], and CPU times in seconds,
respectively, against the step-size produced by the IRK methods with two, three and
four stages are comparatively smaller than the errors given by standard RK methods
with the same order of local accuracy having a slight exception in the CPU time
values but it does no disadvantage on average.

Table 3. Maximum absolute global errors for Problem 4

h IRK3-2 RK2 IRK3-3 RK3 IRK4-4 RK4
0.025 2.0670e-06 2.9377e-05 3.3367e-08 1.9433e-07 3.3479e-10 9.1069e-10

0.0125 2.5910e-07 7.3025e-06 2.0900e-09 2.4213e-08 2.1513e-11 5.6637e-11
0.00625 3.2428e-08 1.8205e-06 1.3074e-10 3.0216e-09 1.3544e-12 3.5314e-12

Table 4. Final absolute errors for Problem 4

h IRK3-2 RK2 IRK3-3 RK3 IRK4-4 RK4
0.025 2.0738e-07 2.7957e-05 2.2595e-08 1.5575e-07 3.0215e-10 6.9908e-10

0.0125 2.6604e-08 6.9468e-06 1.4078e-09 1.9368e-08 1.8711e-11 4.3384e-11
0.00625 3.3655e-09 1.7315e-06 8.7830e-11 2.4145e-09 1.1680e-12 2.7018e-12

Table 5. CPU times (seconds) for Problem 4

h IRK3-2 RK2 IRK3-3 RK3 IRK4-4 RK4
0.025 6.2500e-02 0.0000e+00 4.6875e-02 0.0000e+00 1.8750e-01 0.0000e+00

0.0125 6.2500e-02 0.0000e+00 1.5625e-01 0.0000e+00 2.3438e-01 0.0000e+00
0.00625 5.7813e-01 0.0000e+00 3.9063e-01 0.0000e+00 2.5000e-01 0.0000e+00

Problem 5. Finally, we consider system of initial value problems as given below:

y′1 (x) =−2y1 + y2 +2sin(x)
y′2 (x) = y1−2y2 +2(cos(x)− sin(x))
y1 (0) = 2, y2 (0) = 3

,

with exact solution
y1 (x) = 2e−x + sin(x)
y2 (x) = 2e−x + cos(x)

.

Given below, the Tables 6, 7 and 8 show that the maximum absolute global error,
absolute error at the final nodal point of the integration interval [0,10] for both the
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unknowns, that is, y1 and y2, and CPU times for varying values of the step-size;
produced by the IRK methods with two, three and four stages are comparatively
smaller than the errors given by standard RK methods with the same order of local
accuracy having a slight exception in the CPU time values but it once again does no
disadvantage on average. Further, these errors keep decreasing with a decrease in the
step-size of the methods having IRK with smaller errors at every stage.

Table 6. Errors and CPU time for Problem 5 with step size h = 0.025

Method CPU Time MaxErrory1 MaxErrory2 LastErrory1 LastErrory2
IRK3-2 8.9063e-01 7.7638e-06 1.3491e-06 1.7657e-06 1.3300e-07

RK2 1.5625e-02 9.1839e-05 6.6403e-05 2.2968e-05 4.3508e-05
IRK3-3 1.0781e+00 9.7167e-08 4.8752e-08 2.2067e-08 1.1277e-08

RK3 0.0000e+00 1.5634e-06 1.4649e-06 5.2205e-07 8.7773e-07
IRK4-4 1.4375e+00 1.7958e-08 1.2479e-08 1.3797e-08 8.3088e-09

RK4 1.5625e-02 2.5789e-08 2.6135e-08 9.0293e-09 1.1917e-08

Table 7. Errors and CPU time for Problem 5 with step size h = 0.0125

Method CPU Time MaxErrory1 MaxErrory2 LastErrory1 LastErrory2
IRK3-2 1.6875e+00 9.7351e-07 1.6616e-07 2.2138e-07 1.5590e-08

RK2 1.5625e-02 2.2644e-05 1.6328e-05 5.5131e-06 1.0686e-05
IRK3-3 2.1719e+00 6.0882e-09 3.0494e-09 1.3872e-09 7.1443e-10

RK3 0.0000e+00 1.9215e-07 1.7987e-07 6.3029e-08 1.0747e-07
IRK4-4 2.7969e+00 1.1268e-09 7.8475e-10 8.6913e-10 5.2724e-10

RK4 1.5625e-02 1.5829e-09 1.6043e-09 5.4647e-10 7.2654e-10

Table 8. Errors and CPU time for Problem 5 with step size h = 0.00625

Method CPU Time MaxErrory1 MaxErrory2 LastErrory1 LastErrory2
IRK3-2 5.1719e+00 1.2188e-07 2.0665e-08 2.7716e-08 1.8822e-09

RK2 1.5625e-02 5.6222e-06 4.0490e-06 1.3507e-06 2.6486e-06
IRK3-3 4.6719e+00 3.8099e-10 1.9066e-10 8.6959e-11 4.4958e-11

RK3 0.0000e+00 2.3815e-08 2.2283e-08 7.7421e-09 1.3296e-08
IRK4-4 6.9531e+00 7.0559e-11 4.9195e-11 5.4537e-11 3.3205e-11

RK4 1.5625e-02 9.8013e-11 9.9365e-11 3.3391e-11 4.4675e-11

5. Conclusions

In this research work, it was observed that the linear explicit IRK methods with
two, three and four stages produced the error estimates smaller than the ones pro-
duced by their counterparts, that is, two, three and four-stage standard linear explicit
RK methods. The principal term for the local truncation errors of the methods was
derived and compared with the existing RK methods to show better performance of
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the IRK methods. Thus, the IRK methods not only use reduced slope evaluations
per integration step while maintaining the same order of local accuracy as that of
standard RK methods but they are also a more useful measure for determining the
constant step-size h required to solve an initial value problem in ordinary differential
equations as was observed in Tables 1 and 2. Further, maximum absolute global er-
rors and the absolute errors at the final nodal point for IRK methods are also smaller
than those produced by the standard RK methods as shown in the above tabular data.
Based upon the bounds derived above, it is concluded that the IRK methods are com-
putationally more effective as they require a smaller number of iterations to approx-
imate the solution of an initial value problem in comparison with standard linear
explicit RK type methods.
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