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Abstract. In this article, the Differential Transform Method (DTM) is applied to derive
a semi-analytic solution for the non-linear MHD (Magneto Hydro Dynamics) Jeffery-Hamel
flow between rectangular inclined smooth planes. A non-linear ordinary differential equation
of order four is obtained from Navier-Stokes equations using similar transformation.
A comparison between DTM, PM (Perturbation Method) and numerical solution is shown
here to validate the obtained results with its convergence analysis for different values of m
and a Reynolds number in divergent channels.

MSC 2010: 34A34, 34B60
Keywords: Differential Transform Method, Jeffery-Hamel flow, higher order non-linear
ordinary differential equation

1. Introduction

There is a great importance of incompressible fluid flow with heat transfer in
cooling systems of malls and nuclear plants. The effect of an angle between two
unparalleled solid walls meeting at a vertex on velocity of viscous fluid was studied
by Hamel [1] and Jeffery [2]. They derived a mathematical formulation to explain
the behaviour of a velocity profile for both divergent and convergent channels. Due
to the importance of the Jeffery-Hamel flow problem in industry applications, some
researchers analysed the Jeffery-Hamel problem with the effect of magnetic field,
heat transfer and Nano-particle fluid flow. Akulenko et al. [3] discussed the so-
lution of the problem of a steady viscous flow in a convergent channel by taking
different values of Reynolds numbers to explain the physical phenomena of the prob-
lem. Makinde and Mhone [4] used a special type of semi-numerical Hermite-Padé
approximation approach to obtain the solution of the MHD Jeffery-Hamel problem.
Moghimi et al. [5] solved the MHD Jeffery-Hamel flow problem by using Homo-
topy Analysis Method in non-parallel sides, while the same type of problem was
solved by Mustafa et al. [6] with RKHS (Reproducing Kernel Hilbert Space Method).
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Later on, the same problem was discussed by Sheikholeslami et al. [7] with the con-
sideration of the magnetic field effect. For the first time, Mustafa [8] analyzed the
Jeffery-Hamel flow problem with stretchable walls. Naveed [9] investigated a special
case of the flow in which the walls were taken to be shirking and stretching. Singh
and Shodiya [10] used the Modified Sumudu Transform technique to estimate the na-
ture of Jeffery-Hamel flow while Eman et al. [11] introduced a multi-step generalized
Differential Transform Method for finding the solution of a time-fractional non-linear
block system. The consequence of thermal radiation on the classical Jeffery-Hamel
flow problem due to the appoint sink or source term in parallel plates was analysed by
Barzegar [12] for the particular case in which the plates are adjusted for stretchability.
Dongochi and Divsalar [13] introduced the Duan Rach Approach (DRA) to analyze
the physical phenomena arising during flow and heat transfer of MHD nano-fluid
between two plates in the presence of thermal radiation. Vasile et al. [14] applied
Optimal Homotopy Asymptotic Method to estimate the behaviour of MHD Jeffery-
-Hamel flow and showed that OHAM is not affected by large/small variation of pa-
rameters. Nagler [15–17] developed the Jeffery-Hamel flow problem of nano-fluid
with the effects of wall friction and analytically and numerically solved the problem
to validate results. Later he derived a mathematical formulation of Jeffery-Hamel
flow with the consideration of the flow as a non-Newtonian flow. Khan et al. [18]
used the Haar wavelet method and numerically investigated the Jeffery-Hamel flow
and heat transfer in Eyring-Powell fluid in the presence of an outer magnetic field.
Asmat, Najeeb and Farah [19] explored the Jeffery-Hamel flow of an incompressible
non-Newtonian fluid inside the non-parallel walls and observed the influence of heat
transfer in the flow field. Egashira et al. [20] extended the Jeffery-Hamel flow prob-
lem to elucidate characteristics of low-Re flows in a microscopic channel by taking
a permeable wall. Many approaches, like the travelling wave transformation method,
the Cole-Hopf transformation method, the optimal Homotopy asymptotic method,
and the generalized boundary element approach were applied to solve the problems
of Jeffery-Hamel flows and other fluid mechanics problems which are inherently non-
linear. In fact, in most of the cases, such problems do not have analytical solutions
so there is great a importance of numerical or approximate solution of the problem to
examine the nature of physical phenomena of the problems with certain limitations.
The Differential Transform method (DTM) is an approximate analytical method in-
troduced by Zhou and Pukchov [21] in 1986 to solve the problems that arise in electric
circuit analysis. Later on, several authors [11, 22–24] used this DTM to derive the
solution of non-linear Gas Dynamics, Klein-Gordon equations arising in fluid flow
problems, fuzzy partial differential equations, irrational order fractional differential
equations, fractional non-linear Bloch system the thermal analysis for exponential
fins under sensible and latent heat transfer, Kolmogorov-Petrovskii-Piskunov equa-
tion and for different types of Phenomena arising in fluid flow through Porous Media.

Here in this work, the Magneto Hydro Dynamics Jeffery-Hamel flow between
rectangular inclined smooth planes is considered and mathematical formulation is
obtained from Navier-Stokes equations with the consideration of different slopes
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and Reynolds numbers. The Differential Transform Method (DTM) is used to study
the variations of velocity profiles during the fluid flow between rectangular inclined
smooth planes. Finally, the obtained results have been validated by comparing
the obtained results with the results obtained through the Perturbation method and
the Runge-Kutta method.

Here, a Cartesian coordinates system is considered in a such a way that straight
lines y = mx+d0 and y =−mx−d0 work as a higher plate and lower plates respec-
tively in a rectangular unparalleled inclined smooth planes as shown in Figure 1.

2. Mathematical formulation of the problem

Fig. 1. Flow between plates with slope m

Let us consider a 2-dimensional, steady fluid flow between two inclined plates
which are isolated by 2h(x) distance. Without loss of generality, we use the Cartesian
coordinate system in such a way that the X-axis is along the centre line and the Y-axis
is normal to it as shown in Figure 1. Let f (x, y) and g (x, y) be velocity components in
x and y directions, respectively. As x is increasing, the height of wall is also increasing
and the upper wall geometry for converging (diverging) channel h(x) is defined by
h(x) = d0 +mx where 2d0 is outlet/ inlet constant distance between two plates and
m is slope of plate as shown in Figure 1. The continuity and Navier-Stokes equations
are:

∂ f
∂x

+
∂g
∂y

= 0 (1)

f
∂ f
∂x

+g
∂g
∂y

=− 1
ρ

∂ p
∂x

+ k0

(
∂ 2 f
∂x2 +

∂ 2 f
∂y2

)
(2)
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f
∂ f
∂x

+g
∂g
∂y

=− 1
ρ

∂ p
∂x

+ k0

(
∂ 2g
∂x2 +

∂ 2g
∂y2

)
(3)

where ρ is the the fluid density, p is the pressure, k0 is the kinematic viscosity. Define
stream function ξ (x,y) in such a way that it satisfies equation (1), i.e.

f =
∂ξ

∂y
,g = − ∂ξ

∂x

The transformation ξ = h(x)F(X)φ(γ), where γ =
y

h(x)
, F(X) =

F0

mX +1
are the

free stream at centre of channel and X =
x
h0

, can be used to convert the Navier-Stokes

equations into a higher order ordinary differential equation.

By comparing equation (2) and (3), it obtains a vorticity ψ transport equation

f
∂ψ

∂x
+g

∂ψ

∂y
= k0

(
∂ 2ψ

∂x2 +
∂ 2ψ

∂y2

)
(4)

where ψ =
∂g
∂x
− ∂ f

∂y
.

As per physical requirements, it is assumed that the axial velocity component
f (x, y) has the local maximum velocity F(x) at centre of channel. Also velocity
component perpendicular to x-axis and vorticity will zero at centre line (y = 0) while
the fluid flow is symmetrical about the centre line x = 0 of channel. These are the
following boundary conditions as discussed above:

y = 0 : f (x,y) = F(x), ψ(x,y) = 0,ξ (x,y) = 0. y = h(x) : f (x,y) = 0 (5)

Upon using the similarity transformation, the vorticity Eq. (4) reduced in to(
1+m2

γ
2)2

φ
iv +12m2

γ(1+m2
γ

2)φ iii +12m2(1+3m2
γ

2)φ ii (6)

+2mRe(1+m2
γ

2)φ i
φ

ii +4m3Reγ(φ i)2 +24m4
γφ

i = 0

Here, the Reynolds number is given by Re =
d0F0

k0
and it is positive and negative

for diverging and converging flow respectively. Similarly, boundary conditions in
Eq. (5) reduced to following exact form as:

φ(0) = 0, φ
i(0) = 1,φ ii(0) = 0 and φ

i(1) = 0 (7)



Investigation of a Jeffery-Hamel flow between two rectangular inclined smooth walls using ... 51

3. DTM for solving Ordinary Differential Equation

Differential Transform of function e(γ) can be defined as follows:

E(k) =
1
k!
[
dkφ(γ)

dγk ]γ=0 (8)

where e(γ) is original function and E(k) is the transformed function. The uppercase
and lowercase letters represent the transformed and original function respectively.
The inverse differential transform of E(k) is defined as:

φ(γ) =
∞

∑
0

E(k)γk (9)

Using equation (9) in (10), it gives,

φ(γ) =
∞

∑
0
[
dkφ(γ)

dγk ]
η=0

γk

k!

4. Solution of the MHD Jeffery-Hamel flow with heat transfer problem
using Differential Transform Method

By applying the fundamental operations of the differential transformation method
to equation (6), it obtains,

k

∑
r=0

{
δ (r)+2m2

δ (r−2)+m4
δ (r−4)

}
{(k− r+1)(k− r+2)(k− r+3)E(k− r+3)}

+
k

∑
r=0

{
12m2

δ (r−1)+12m4
δ (r−3)

}
{(k− r+1)(k− r+2)(k− r+3)E(k− r+3)}

+
k

∑
r=0

{
12m2

δ (r)+36m4
δ (r−2)

}
{(k− r+1)(k− r+2)E(k− r+2)}

+
k

∑
r=0

k−r

∑
t=0

{{
2mRδ (r)+2Rm3

δ (r−2)
}

×{(t +1)E(t +1)}{(k− r− t +1)(k− r− t +2)E(k− r− t +2)}}

+4m3R
k

∑
r=0

k−r

∑
t=0
{{δ (r−1)}{(t +1)E(t +1)}{(k− r− t +1)E(k− r− t +1)}}
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+24m4
k

∑
r=0
{δ (r−1)}{(k− r+1)E(k− r+1)}= 0 (10)

By solving above with conditions in eq. (7), the formula becomes,

φ(γ) = γ +

(
−1

3
− 2mRe

45
+m2

(
−2

3
− 163(Re)2

56700

)
+m3

(
−Re

63
− 2179(Re)3

24324300

))
γ

3

(
mRe
30

+m2
(

2
5
+

Re2

225

)
+m3

(
13Re
150

+
163Re3

567000

))
γ

5

+

(
−mRe

210
− m2Re2

350
+m3

(
−Re

14
− 751Re3

1984500

))
γ

7

+

(
m2Re2

1260
+m3

(
4Re
315

+
29Re3

113400

))
γ

9 +

(
−m2Re2

14850
− 191m3Re3

2079000

)
γ

11

+
127m3Re3

8108100
γ

13− m3Re3

1053000
γ

15 + ... (11)

which describes the velocity profiles of Jeffery Hamel flow between two inclined
planes with different values of m and a Reynolds number.

Convergence for DTM
Theorem: [25] Let φ be an operator from a Hilbert space H0 in to H0 and let E be an

exact solution of Eq. (6).
∞

∑
i=0

Ei which is obtained by Eq. (8) converges to the exact

solution E, if there exists a Γ, 0≤ Γ < 1,such that ‖Ek+1‖ ≤ Γ‖Ek‖ , ∀k ∈ N∪{0}.
Proof: We have

S0 = 0,
S1 = S0 +E1 = E1,
S2 = S1 +E2 = E1 +E2,

...
Sn = Sn−1 +En = E1 +E2 +E3 + ...+En

and we will show that {Sn}∞

n=0 is a Cauchy sequence in a Hilbert Space H0.
Now for
‖Sn+1−Sn‖ = ‖En+1‖ ≤ Γ‖En‖ ≤ Γ

2 ‖En−1‖ ≤ . . . ≤ Γ
n+1 ‖E0‖for every n,m ∈ N,
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n≥ m we have

‖Sn−Sm‖= ‖(Sn−Sn−1)+(Sn−1−Sn−2)+ · · ·+(Sm−2−Sm+1)+(Sm+1−Sm)‖
≤ ‖Sn−Sn−1‖+‖Sn−1−Sn−2‖+ · · ·+‖Sm−2−Sm+1‖+‖Sm+1−Sm‖
≤ Γ

n ‖E0‖+Γ
n−1 ‖E0‖+Γ

n−2 ‖E0‖+ · · ·+Γ
m+2 ‖E0‖+Γ

m+1 ‖E0‖
≤
(
Γ

m+1 +Γ
m+2 + · · ·

)
‖E0‖

=
Γm+1

1−Γ
‖E0‖

Which implies lim
n,m→∞

‖Sn−Sm‖ = 0, i.e., {Sn}∞

n=0 is a Cauchy sequence in a Hilbert

space H0 and it convergence to S for S ∈ H0.
Definition: For every i ∈ N∪{0}, Γi can be defined as

Γi =


‖Ei+1‖
‖Ei‖

, ‖Ei‖ 6= 0

0 , ‖Ei‖= 0

Corollary: If 0 ≤ Γi < 1, i = 1,2,3, ..., then
∞

∑
i=0

Ei is converges to the exact solu-

tion E.
Now by Corollary, since

Γ0 =
‖E1‖
‖E0‖

= 0 < 1 , Γ1 =
‖E2‖
‖E1‖

= 0 < 1 ,Γ2 =
‖E3‖
‖E2‖

= 0 < 1

similarly, Γn = 0 for all n. Therefore
∞

∑
0

E(k)γk is convergent.

5. Results and discussion

For the validity of the obtained results, the obtained results are compared with the
existing results of the Perturbation Method and Numerical results in Table 1, which
can be observed that there is a good agreement between the obtained DTM results
with the available results. Figures 2 and 3 discuss the variation of velocity profiles
for different Reynold’s number with constant slope and one can observe that a flow
velocity be more for lower Reynold’s number where as the flow velocity be decreases
as the value of Reynold’s number is increases i.e. the flow velocity is maximum for
Re = 0 and it is minimum for Re = 15. Similarly Figures 4 and 5 discusses the vari-
ations of velocity profiles with different slopes keeping Re fixed and one can notice
that a flow velocity be more in zero slope planes i.e for m = 0 where as the flow veloc-
ity be decreases as the value of slopes is increases i.e. the flow velocity is maximum
for m = 0 while it is minimum for m = 0.9, so overall it can be observed that there is
a greater role of slopes and the Reynold’s number on velocity profiles in fluid flow
through inclined smooth planes.
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Fig. 2. Variations of velocity profiles with
different Re and for m = 0.5

Fig. 3. Variations of velocity profiles with
different Re and for m = 0.1

Fig. 4. Variations of velocity profiles with
different slopes and for Re = 5

Fig. 5. Variations of velocity profiles with
different slopes and for Re = 10

Similarly, Figure 6, discusses the contours of stream lines for different values of
m that are plotted for different slopes.

Fig. 6. Stream contours are plotted for m = 0.2 (solid lines) and m = 0.5 (dotted lines)
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Table 1

Comparison of DTM with Peturbation Method [26] and Numerical solution
Error-1 = |DTM-NM|, Error-2 = |PM-NM|

Y DTM Peturbation
Method Numerical Error-1 Error-2

Re = 20, m = 0.2
0.102 0.101765726 0.101767 0.101766 2.739E-07 1E-06
0.551 0.510338563 0.510382 0.510585 0.00024644 0.000203
0.7551 0.642132813 0.642014 0.642788 0.00065519 0.000774
0.9592 0.706639929 0.706291 0.707638 0.00099807 0.001347

Re = –3, m = 0.2
0.102 0.101645541 0.101646 0.101646 4.592E-07 0
0.551 0.494957305 0.494954 0.494998 4.0695E-05 4.4E-05
0.7551 0.610699578 0.610674 0.610847 0.00014742 0.000173
0.9592 0.663428649 0.663372 0.663708 0.00027935 0.000336

Re = –2, m = 0.2
0.102 0.101636641 0.101637 0.101637 3.594E-07 0
0.551 0.49385821 0.493856 0.493897 3.879E-05 4.1E-05
0.7551 0.608516065 0.608499 0.608658 0.00014193 0.000159
0.9592 0.660491166 0.660454 0.660761 0.00026983 0.000307

Re = –2, m = 0.5
0.102 0.101518361 0.10152 0.101519 6.387E-07 1E-06
0.551 0.477785481 0.4777 0.4792 0.00141452 0.0015
0.7551 0.57415105 0.573571 0.579222 0.00507095 0.005651
0.9592 0.611359882 0.609895 0.620818 0.00945812 0.010923

6. Conclusions

In this article, the flow behaviour of the velocity profiles in different slopes and
for a different Reynold’s number during fluid flow is shown between two parallel
planes in a rectangular coordinate system. Here, the DTM is applied to find the
solutions for the velocity profiles of the fluid flow and has validated the efficiency
of the method by comparing the obtained results with the results obtained by the
Perturbation Method & Numerical results. It can be concluded that DTM is more
reliable method as compared to other available methods in the study of Jeffery-Hamel
flow problems.
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