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Abstract. The expressions of the probabilities density distribution of failure loading for  

an elastic isotropic body under the action of a homogeneous axisymmetric loading are writ-

ten. The disc-shaped cracks that do not interact with each other are uniformly distributed. 

The correlation for finding the most probable, mean value, dispersion and variation coeffi-

cient of failure loading are obtained. The dependence of the mentioned statistical strength 

characteristics on the type of applied loading, number of defects (body sizes) and structure 

material heterogeneity are investigated. 
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1. Introduction 

The development of the strength theory and criteria of structural materials fail-

ure is an important and actual task. Wide application of high-strength materials, 

which are characterized by brittle fracture, necessitates the creation of reliable 

methods for predicting the properties of structural elements in the process of  

exploitation. For effective simulation of brittle materials fracture, it is important to 

take into account the stochastic nature of their structure. The complex application 

of known deterministic fracture mechanics solutions and probabilistic statistical 

methods enables us to construct qualitative models of structural elements strength 

and reliability for different types of loading. Such a technique has been developed 

in the articles [1-6]. 

The purpose of this study is to develop a method for calculating the statistical 

strength characteristics of brittle model materials under the conditions of homoge-

neous axisymmetric loading on the basis of defects deterministic theory and proba- 

bility theory methods. 
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2. Formulation of the problem 

Studying the brittle materials fracture process, the consideration of the defects 

such as cracks spatial location in a three-dimensional body is important. The sim-

plest model of a three-dimensional body with stochastically distributed defects is  

a flat, circular-planar (disc-shaped) crack that is characterized by a radius R  and 

two independent orientation angles in space. The model is considerably simplified 

in the case of an axisymmetric loading. Then, a disc-shaped crack in an axisym-

metric stress field is characterized by two statistically independent parameters:  

the radius R  and the orientation angle α  between the normal n
r

 to the crack plane 

and the symmetry axis Oz. 

We shall consider an elastic isotropic body (or its element) that has volume V , 

and is under the conditions of a homogeneous axisymmetric loading P and 

Q Pη= . It evenly distributes N  disc-shaped cracks that do not interact with each 

other (the number N  will be assumed to be proportional to volume V : 
0

N N V= , 

where 
0
N  is the number of defects per unit volume). The crack resistance of the 

material 
IC
K  will be considered the same throughout the body. 

In the case of material isotropy, all the cracks orientations are equally probable 
 

(0 / 2)α π≤ ≤ . Therefore, the end of the normal n
r

 with the same probability covers 

the area of the hemisphere 
2

2 nπ

r

. The ends of the normal with orientation angles 

α  that do not exceed a given value *
α , cover the area of the spherical segment 

2

2 (1 cos )nπ α−

r

. The probability that the crack orientation angle α  will not exceed 

a given value *
α  is defined as the ratio of the segment areas and the hemisphere: 

*
( ) 1 cosP F α α α= < = −  [7]. Accordingly, the probability distribution density of  

a random variable α  is written as follows: ( ) sinf α α= . 

We choose the probability distribution density of a random parameter R in the 

form of a generalized β-distribution [8]: 
1

( ) 1

r

r R
f R

d d

+  
= − 

 
(0 R d≤ ≤ , d  is  

a finite structural characteristic). Then the distribution function is defined as follows: 
1

( ) 1 1

r

R
F R

d

+

 
= − − 

 
. Here r  is the parameter of the material fracture (with its  

increasing the more probable are a small cracks). 

3. Distribution function of failure loading 

In article [9] the expressions of the failure loading distribution function for  

a body element with one disc-shaped crack for the following loads are obtained: 
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1) all-round tension for 0 (0 1)P Q η≥ ≥ ≤ ≤  
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2) all-round tension for 0 (1 )Q P η≥ ≥ ≤ < ∞  
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3) tension in the axial and compression in lateral directions for 0, 0P Q≥ ≤  

( 0)η−∞ < ≤  
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4) compression in the axial and tension in the lateral directions for 0, 0P Q≤ ≥  

( 0)η−∞ < ≤  
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In the expressions (1)-(4) immeasurable loading 
2

IC

P d
p

Kπ
=  is introduced. 

On the basis of the failure loading distribution function (1)-(4), the statistical 

strength characteristics of the axisymmetric loaded body (or its element) are  

determined. 
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Consider partial cases: the same all-round tension (P Q= , 1η = ), biaxial tension 

( 0P = , 
2

Ic

Q d
q

Kπ
= , η →∞), uniaxial tension ( 0P > , 0Q = , 0η = ), tension in  

the axial and equal to it compression in lateral directions ( 0P Q= − > , 1η = − ) and 

compression in the axial and equal to it tension in the lateral directions 

( 0P Q− = > , 1η = − ). 

Then, the failure loading distribution function for element of the body with one 

crack will be written as follows: 

1) for the same all-round tension 

 2 1

1
( ,1) (1 ) , 1

r

F p p p
− +

= − ≤ < ∞; (5) 

2) for biaxial tension 

 
2
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3) for uniaxial tension 
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4) for tension in the axial and equal to it compression in lateral directions 
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5) for compression in the axial and equal to it tension in the lateral directions 
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4. Distribution density probabilities of failure loading 

For a body with a stochastic distribution of N  defects, the distribution density 

probabilities of failure loading are determined [8] as follows: 

 1 1

1

( , )
( , ) (1 ( , ))

N

N

dF p
f p N F p
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η
η η

−

= − . (10) 
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Substituting the expressions of the distribution function (1)-(4) into the formula 

(10), we obtain the expressions of the distribution density probabilities of fracture 

loading for a body with randomly distributed disc-shaped defect-cracks for the  

following cases of axisymmetric loading: 

1) all-round tension for 0 (0 1)P Q η≥ ≥ ≤ ≤  
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2) all-round tension for 0 (1 )Q P η≥ ≥ ≤ < ∞  
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3) tension in the axial and compression in lateral directions for 0, 0P Q≥ ≤  
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4) compression in the axial and tension in the lateral directions for 0, 0P Q≤ ≥  
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For partial cases, the distribution density probabilities of failure loading will be 

written as follows: 

1) for the same all-round tension 
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2
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2) for biaxial tension 
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3) for uniaxial tension 
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4) for tension in the axial and compression in lateral directions that is equal to it  
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5) for compression in the axial and tension in lateral directions that is equal to it 
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5. Probabilistic characteristics of failure loading 

We will investigate some probabilistic characteristics of failure loading. Its most 

probable value (mode), which corresponds to the loading level, in which the distri-

bution density probabilities reach a maximum, is determined from the equation [8] 

 
2

2

( , )
0N

d F p

dp

η
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( , ) 1 1 ( , )
N

N
F p F pη η= − − . (20) 

Equation (20) can be reduced to a form 

 ( )2
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Mean value of fracture loading is written as follows [8]: 

 ( )
max

min

( )

min 1

( )

( ) 1 ( , )

p
N

p

p p F p dp

η

η

η η= + −∫ . (22) 

The dispersion and the coefficient of failure loading variation are found by the 

formulas [8] 
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22

min 1
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( ) ( ) 2 1 ( , )

p
N

p

D p p F p pdp p

η

η

η η= + − −∫ , (23) 

 ( ) ( ) /W p D p p= . (24) 

Substituting in formulas (20)-(24) the expressions for the failure loading distri-

bution function 
1
( , )F p η  (1)-(9), we obtain the relations for determination of the 

probability strength characteristics considered. 

According to the expressions (15)-(19) in Figures 1 and 2 the graphs of  

the distribution density probabilities of failure loading ( , )
N
f p η  for a body with 

stochastic distribution of N  cracks for different types of a stressed state were  

constructed. Distributions of a failure loading random variable will be unimodal. 

The threshold value of strength not equal to zero and depends on the type of  

loading. 
 

 

Fig. 1. Distribution density probabilities of failure loading for the same all-round tension 
for materials with different number of defects and heterogeneity  

(solid for 3r = , dashed for 5r = ) 

According to the expressions (22)-(24) in Figures 3-5, the graphs of failure 

loading probability characteristics for various types of stressed state for materials 

with different number of defects and different heterogeneity were constructed. 
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Fig. 2. Distribution density probabilities of failure loading for various types of stressed state 

(solid for 1η = , dashed for 0η = , dotted dashed for 1η = − ) 

 
Fig. 3. The failure loading mean value for various types of stressed state 

(solid for 2r = , dashed for 4r = ) 

 
Fig. 4. Dispersion of failure loading for various types of stressed state 

(solid for 2r = , dashed for 4r = ) 
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Fig. 5. Coefficient of failure loading variation for materials of different heterogeneity 

for the same all-round tension 

6. Conclusions 

In Figures 1 and 2, the influence of cracks number N  in the body (body volume 

at the same defect density), the distribution law of the cracks radiuses, that is, the 

heterogeneity of the material (parameter r ) and the ratio of the applied loading  

(parameter η ) to the most probable value of strength (mode ( )Mo p ) are considered. 

As can be seen from Figure 1, for the same all-round tension ( 1η = ), with the 

increasing in the number of cracks in the body, decreases the most probable 

strength value. This tendency persists when changing material heterogeneity  

(parameter r ). Increasing the value r  (increasing the uniformity of the material) 

leads to an increase ( )Mo p . With the change of the parameter r , the shape of the 

distribution density curve changes. The value ( )Mo p  can also be obtained from 

equation (21). 

In Figure 2, we see a loading type influence on the body strength. The smallest 

value ( )Mo p  is observed for the same all-round tension ( 1η = ), the greatest for 

tension in the axial and equal to it compression in lateral directions ( 1η = − ).  

Similar conclusions are made in [10], where the indicated values ( )Mo p  are found  

in another way. The magnitude ( )Mo p  increasing and shape of the distribution 

density curve ares affected by the number of defects  N. 

We note that the maximum ordinates of the distribution curve are directly pro-

portional to N and inversely proportional to  r. This feature does not depend on the 

type of applied loading. Consequently, in the case of N  increasing, the maximum 

value of the distribution density also increases and decreases with r  increasing. 

In Figure 3, the influence of the loading ratio, the number of cracks and material 

homogeneity on the failure loading mean value p  is considered. With material 

homogeneity increasing, the failure loading mean value increases. Its greatest value 

will be in case of tension in the axial and equal to it compression in lateral direc-

tions. Such regularities are observed in [9]. Note that there is a certain range of 

body sizes, for which strength with an asymptotic approximation to its threshold 

value almost does not depend on the defects number. 
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Figure 4 shows the dependence of the failure loading dispersion ( )D p  on the 

number of cracks, the loading ratio and the material homogeneity. The dispersion  

is a decreasing function of the number of cracks in the body. At a certain interval 

of N  change we see a rapid decreasing of ( )D p  value. The nature of this decreas- 

ing does not depend on the type of loading and parameter  r. With a change in the 

parameter   r, the strength dispersion varies in size, which is almost independent  

of η . As in the case of the mean value p , there is a certain range of body sizes, 

for which the strength dispersion is almost independent of the defects number. 

In Figure 5, the influence of material homogeneity and the number of cracks on 

the coefficient of failure loading variation ( )W p  for the same all-round tension is 

investigated. The magnitude ( )W p  increases with the parameter r  increasing and 

decreases with the cracks number N  increasing. There is a certain range of body 

sizes for which we observe a significant change in the ( )W p  magnitude and  

an asymptotic approximation to a certain threshold value. Similar patterns are 

traced to other types of a stressed state. 
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