
Journal of Applied Mathematics and Computational Mechanics 2018, 17(4), 5-11

www.amcm.pcz.pl p-ISSN 2299-9965

 DOI: 10.17512/jamcm.2018.4.01 e-ISSN 2353-0588

THE INFLUENCE OF INERTIA WEIGHT ON THE PARTICLE

SWARM OPTIMIZATION ALGORITHM

Dawid Cekus, Dorian Skrobek

Institute of Mechanics and Machine Design Fundamentals
Czestochowa University of Technology

Częstochowa, Poland
cekus@imipkm.pcz.pl, skrobek@imipkm.pcz.pl

Received: 10 September 2018; Accepted: 30 January 2019

Abstract. The paper presents the use of the Particle Swarm Optimization (PSO) algorithm

to find the shortest trajectory connecting two defined points while avoiding obstacles.

The influence of the inertia weight and the number of population adopted in the first itera-
tion of the PSO algorithm was examined for the length of the sought trajectory. Simulation

results showed that the proposed method achieved significant improvement compared to

the linearly decreasing method technique that is widely used in literature.

MSC 2010: 74P05, 65Y20, 65K10

Keywords: Particle Swarm Optimization, PSO algorithm, inertia weight, trajectory

1. Introduction

The most mobile robots or manipulators used in industry have a predefined

optimum trajectory, but as a result of changes in a shop floor and production lines,

there is a need to define a new work path. It often happens that the changes of

workspaces are fluidly reorganized, meaning that the new trajectories’ work must

be determined without delay. In this case, the trajectory can be searched again,

but the newly found track may cause a change in the work cycle of several devices

that work together. To avoid this inconvenience, a similar trajectory to the previous

one must be found.

In this paper, we present the use of the Particle Swarm Optimization (PSO)

algorithm [1, 2] to find the optimal 2D trajectory between two defined points.

Moreover there are obstacles in the working space (Fig. 1).

2. Particle Swarm Optimization algorithm

The PSO algorithm is the result of observation of the phenomena occurring

in nature, such as a school of fish or a horde of insects. Each particle swarm is able

D. Cekus, D. Skrobek 6

to remember and use their experience, which is taken from the process of iteration,

and is also able to communicate with other members of the population.

Fig. 1. Workspace

Particle Swarm Optimization was proposed in 1995 by Kennedy and Eberhart [1]

and has been further modified by transformation of the equations of a motion of

the particles (a combination of global and local versions) [3-6].

The PSO method is illustrated schematically in Figure 2.

Fig. 2. Block diagram of the PSO algorithm [7, 8]

In the PSO algorithm, initial values (such as the position and velocity) of each

particle in a swarm are random. Then, in the iteration step n+1, the velocities in the

m direction are described as follows:

 () ()() 2,1,
)(

22
)(

11
)()1(

=−+−+=
+

mxgrcxprcwVV
n

mm

n

mm

n

m

n

m
χ , (1)

where χ is a constriction factor, w is the inertia weight determined at the level of

the i-th particle, Vm
(n)
 is a velocity in previous iteration step, c1 and c2 are cognitive

and social parameters suitable, r1 and r2 are random numbers taken from [0,1],

pm is a personal best position of the considered particle from the whole iteration

The influence of inertia weight on the Particle Swarm Optimization algorithm 7

process, gm is a global best position obtained by the entire swarm, ∆t is a time step

and xm
(n)
 is a particle position in previous iteration step.

The new position for each particle in each test direction is equal to:

 () ())1(1 ++

+=
n

m

n

m

n

m
Vxx (2)

Before proceeding to the calculations, 15 auxiliary points, by which the sought

trajectory runs, are drawn (Fig. 3).

Fig. 3. The sought trajectory in the first iteration

The trajectory shown in Figure 3 is derived from the first iteration and is

the result of interpolation by 17 points (15 auxiliary points, starting and end point).

In the first iteration, this trajectory usually goes through obstacles or is outside

the working area. The PSO algorithm is designed to find the shortest trajectory.

To do this, the algorithm must “move” the points in such a way that the entire

trajectory is in the solution search area and that the obstacles are avoided. If the

trajectory goes through obstacles, the penalty function is taking account in the

objective function [9].

In the PSO algorithm, a population size (pop = A + B + C) is equal 150. Each

population contains 15 points randomly generated in the solution search area.

The accepted population for the first iteration consists of the following parts:

• the first element of the population joints the starting point with the ending point

(15 points are evenly distributed over the entire length of the shortest trajectory)

- this trajectory ignores obstacles: 1=A ,

• n% of the remaining population (n = 20, 60, 100) constitutes the points (15 points)

drawn before the start of the PSO algorithm. They are identical for each inertia

weight: %)(nApopB −= ,

• the remaining part of the population consists of randomly generated 15 points:
BApopC −−= .

D. Cekus, D. Skrobek 8

In subsequent iterations, the position of the points from each population is

changed in accordance with the operation of the PSO algorithm.

The following inertia weights have been analyzed during the test [10-13]:

1.
MaxIt

ItMaxIt
w

−

=
1 , (3)

2. () () dampwiwiw 22 1 =+ , () 11
2
=w , (4)

3. 7.0
3
=w , (5)

4.
2

5.0
4

r

w += , (6)

5.
MaxIt

Itww
ww

)(minmax

max5

−

−= , (7)

6.



















−=

b

MaxIt

It
aww exp06 , (8)

The variables in formulas (3)-(8) denote: MaxIt - maximum number of iterations

(MaxIt = 300), It - current iteration, wdamp - damping factor (wdamp = 0.98), r - random

numbers from the interval [0,1], a - local search attractor (a = 3), b - global search

attractor (b = 1), w0 - initial inertia weight (w0 = 0.9), wmax - maximum value of the

inertia weight (wmax = 1), wmin - minimum value of the inertia weight (wmin = 0.3).

Figure 4 shows all weights accepted for calculation. Each of the inertia weights

(except for the fourth) is identical for each calculation attempt, since the fourth

inertia weight is so-called noise in the range [0.5;1].

Fig. 4. Inertia weights

The influence of inertia weight on the Particle Swarm Optimization algorithm 9

3. The sample numerical results

Each test for the adopted n% of population, for each inertia weight has been

repeated ten times. It was assumed that the number of iterations is 300 and the

population is 150. The results from the calculations are summarized in Tables 1-3.

Table 1. Length of trajectory for 20% of accepted population

 w
1
 w

2
 w

3
 w

4
 w

5
 w

6

L [mm]

2041,38 1978,84 2142,56 2003,59 2541,56 2042,06
1978,34 2151,70 2255,30 1977,56 2141,44 2051,65
2267,02 1978,82 2043,45 2149,59 2041,94 2043,59
2042,44 2044,54 2037,73 2193,50 2266,04 2185,41
2191,74 1974,69 1977,43 2333,11 1975,34 2147,14
2427,21 1983,95 2046,58 1978,09 2042,71 2191,27
2187,23 2197,23 2298,93 2189,38 2057,13 2046,88
1978,33 2081,48 2290,99 2512,36 2188,47 1975,94
1975,80 1976,70 2190,03 2194,30 1976,64 2665,68
2141,42 2032,91 1975,21 2249,58 2041,50 1976,60

Table 2. Length of trajectory for 60% of accepted population

 w
1
 w

2
 w

3
 w

4
 w

5
 w

6

L [mm]

2189,70 1975,43 1980,10 1976,64 1978,83 1975,56
1976,22 2040,13 2027,49 1978,35 2028,51 2195,18

1974,37 1982,43 2029,75 1981,49 2033,99 2525,41
2047,40 1976,10 2141,54 2043,92 2358,57 2059,93
2242,70 2062,55 1976,95 1974,45 1975,48 1977,22
1975,06 2010,17 1975,88 1977,76 1976,73 2188,88
1975,61 2043,25 1975,21 1976,97 1976,60 2201,67
1986,50 2264,59 2188,52 1974,87 2541,85 2194,03
2336,88 2190,35 2188,52 2063,96 1974,80 2044,47
1974,75 2044,91 2317,06 2196,02 1978,65 2188,90

Table 3. Length of trajectory for 100% of accepted population

 w
1
 w

2
 w

3
 w

4
 w

5
 w

6

L [mm]

1983,07 2039,97 1983,12 1981,22 1982,92 1983,93
1978,31 2243,99 1983,83 1981,20 1984,99 1978,80
1979,83 2441,41 1983,99 1984,57 1980,19 1983,40
1982,61 1985,52 1982,29 1982,61 2240,56 1984,00
1986,93 1984,71 1983,96 2009,57 1983,67 1981,89
1981,48 2912,43 2242,48 1983,62 1983,14 1984,76
1982,94 2197,19 2225,60 1982,78 1982,55 1978,54
1988,51 1986,93 2220,23 1983,41 1974,75 2013,83
1983,83 1992,81 1977,02 2021,78 1975,50 1979,43
1985,19 2087,65 1979,09 1982,90 1986,73 1976,91

D. Cekus, D. Skrobek 10

In the presented results (Tables 1-3), the PSO algorithm finds the shortest tra-

jectory in the range [1974; 1985], this discrepancy is due to an insufficient number

of iterations.

In the assumed population, 20% the shortest trajectory is found for the second

weight (w2) L = 1974.69 mm, for this inertia weight half of the sought trajectory

can be considered as the shortest. In the case of the other inertia weights, they have

two of the shortest trajectories, and for w1 there are three trajectories.

In the case of 60% of the population, the shortest trajectory is for the first inertia

weight (w1) L = 1974.37 mm. Furthermore for that inertia weight, half of the

sought trajectories are the best solutions. Weights w4 and w5 are characterized by

the largest number of shortest found trajectories, because they have 7 and 6 of

these trajectories respectively.

The algorithm (for the results shown in Table 3) could not find a global mini-

mum due to the fact that the entire population has reached the same trajectory al-

most at the beginning of the algorithm's operation. This is the result of the adoption

of 149 populations (n = 100%) and one population connecting the starting point

with the ending point (straight segment) - no drawing of intermediate points for

the population in the first iteration.

Figure 5 shows the shortest found trajectory (n = 60%, w1).

Fig. 5. The shortest found trajectory

4. Conclusions

The results obtained in this work can be useful in the selection of the inertia

weight in the Particle Swarm Optimization algorithm. The inertia weight has

a significant impact on the results of calculations. The use of the PSO method

allows one to determine the optimal new trajectory or to correct an existing path

in any working space with obstacles.

The influence of inertia weight on the Particle Swarm Optimization algorithm 11

In the case of searching for a completely new trajectory, the first population

should be avoided by providing the coordinates of the auxiliary points, which

should be generated randomly.

However, when it is only necessary to correct the trajectory (e.g. positions

of obstacle or their size have been changed), we can avoid drawing of the points

and introducing their coordinates independently into the algorithm. In addition,

an appropriate number of constant population (ideally within n = 60%) should be

adopted based on the existing trajectory. In the variants n = 20% and n = 100%,

the algorithm has too little or too many imposed population, so it does not improve

the existing trajectory, it only looks for a new one or makes changes but to a small

extent.

In algorithms in which weight factors are used, a number of tests should always

be carried out before the final research to select the parameters of algorithm and

applied weights.

In future studies, the authors plan to use obstacles with the irregular shape.

References

[1] Kennedy, J., & Eberhart, R.C. (1995). Particle Swarm Optimization. Proceedings of the IEEE
International Conference on Neutral Networks, Volume 4, 1942-1948.

[2] Bai, Q. (2010). Analysis of particle swarm optimization algorithm. Computer and Information
Science, 3, 1, 180-184.

[3] Tarnowski, W. (2011). Optymalizacja i polioptymalizacja w technice. Koszalin: Wydawnictwo
Uczelniane Politechniki Koszalińskiej.

[4] Clerc, M., & Kennedy, J. (2002). The particle swarm-explosion, stability and convergence in
a multidimensional complex space. IEEE Transaction on Evolutionary Computation, 6, 2, 58-73.

[5] Cheng, R., & Yao, M. (2001). Particle Swarm Optimizer with time-varying parameters based on
a Novel Operator. Applied Mathematics & Information Sciences, 5, 2, 33-38.

[6] Szczepanik, M. (2013). Algorytmy rojowe w optymalizacji układów mechanicznych. Gliwice:
Wydawnictwo Politechniki Śląskiej.

[7] Cekus, D., & Skrobek, D. (2016). Trajectory optimization of a SCARA manipulator using Parti-
cle Swarm Optimization. Machine Dynamics Research, 40, 1, 45-52.

[8] Cekus, D., & Waryś, P. (2015). Identification of parameters of discrete-continuous models.
AIP Conf. Proc. 1648, 850055, DOI: 10.1063/1.4913110.

[9] Skrobek, D., & Cekus, D. (2019). Optimization of the operation of the anthropomorphic
manipulator in a three-dimensional working space. Engineering Optimization,
DOI: 10.1080/0305215X.2018.1564919.

[10] Ao, Y., & Chi, H. (2010). An adaptive differential evolution to solve constrained optimization
problem in engineering design. Engineering, 2, 65-77.

[11] Lin, W., Lee, W., & Hong, T. (2003). Adapting crossover and mutation rates in genetic algo-
rithms. Journal of information science and Engineering, 19, 889-903.

[12] Bansal, J.C., Singh, P.K., Saraswat, M., Verma, A., Jadon, S.S., & Abraham, A. (2011). Interia
weight strategies in particle swarm optimization. Third World Congress on Nature and Biologi-

cally Inspired Computing (NaBIC), IEEE, 640-647, DOI: 10.1109/NaBIC.2011.6089659.

[13] Ting, T.O., Shi, Y., Cheng, S., & Lee, S. (2012). Exponential Inertia Weight for Particle Swarm
Optimization. Advances in Swarm Intelligence, vol. 7331, Berlin, Heidelberg: Springer. DOI:
10.1007/978-3-642-30976-2_10.

