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Abstract. The paper presents the use of the Particle Swarm Optimization (PSO) algorithm 

to find the shortest trajectory connecting two defined points while avoiding obstacles.  

The influence of the inertia weight and the number of population adopted in the first itera-
tion of the PSO algorithm was examined for the length of the sought trajectory. Simulation 

results showed that the proposed method achieved significant improvement compared to 

the linearly decreasing method technique that is widely used in literature. 
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1. Introduction  

The most mobile robots or manipulators used in industry have a predefined  

optimum trajectory, but as a result of changes in a shop floor and production lines, 

there is a need to define a new work path. It often happens that the changes of 

workspaces are fluidly reorganized, meaning that the new trajectories’ work must 

be determined without delay. In this case, the trajectory can be searched again,  

but the newly found track may cause a change in the work cycle of several devices 

that work together. To avoid this inconvenience, a similar trajectory to the previous 

one must be found. 

In this paper, we present the use of the Particle Swarm Optimization (PSO)  

algorithm [1, 2] to find the optimal 2D trajectory between two defined points. 

Moreover there are obstacles in the working space (Fig. 1).  

2. Particle Swarm Optimization algorithm 

The PSO algorithm is the result of observation of the phenomena occurring  

in nature, such as a school of fish or a horde of insects. Each particle swarm is able 
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to remember and use their experience, which is taken from the process of iteration, 

and is also able to communicate with other members of the population. 

 

 

Fig. 1. Workspace 

Particle Swarm Optimization was proposed in 1995 by Kennedy and Eberhart [1] 

and has been further modified by transformation of the equations of a motion of  

the particles (a combination of global and local versions) [3-6]. 

The PSO method is illustrated schematically in Figure 2. 

 

 

Fig. 2. Block diagram of the PSO algorithm [7, 8] 

In the PSO algorithm, initial values (such as the position and velocity) of each 

particle in a swarm are random. Then, in the iteration step n+1, the velocities in the 

m direction are described as follows: 
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where χ is a constriction factor, w is the inertia weight determined at the level of 

the i-th particle, Vm
(n)
 is a velocity in previous iteration step, c1 and c2 are cognitive 

and social parameters suitable, r1 and r2 are random numbers taken from [0,1],  

pm is a personal best position of the considered particle from the whole iteration 
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process, gm is a global best position obtained by the entire swarm, ∆t is a time step 

and xm
(n)
 is a particle position in previous iteration step. 

The new position for each particle in each test direction is equal to: 
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Before proceeding to the calculations, 15 auxiliary points, by which the sought 

trajectory runs, are drawn (Fig. 3). 
 

 

Fig. 3. The sought trajectory in the first iteration  

The trajectory shown in Figure 3 is derived from the first iteration and is  

the result of interpolation by 17 points (15 auxiliary points, starting and end point). 

In the first iteration, this trajectory usually goes through obstacles or is outside  

the working area. The PSO algorithm is designed to find the shortest trajectory.  

To do this, the algorithm must “move” the points in such a way that the entire  

trajectory is in the solution search area and that the obstacles are avoided. If the 

trajectory goes through obstacles, the penalty function is taking account in the  

objective function [9]. 

In the PSO algorithm, a population size (pop = A + B + C) is equal 150. Each 

population contains 15 points randomly generated in the solution search area. 

The accepted population for the first iteration consists of the following parts: 

• the first element of the population joints the starting point with the ending point 

(15 points are evenly distributed over the entire length of the shortest trajectory) 

- this trajectory ignores obstacles: 1=A ,  

• n% of the remaining population (n = 20, 60, 100) constitutes the points (15 points) 

drawn before the start of the PSO algorithm. They are identical for each inertia 

weight: %)( nApopB −= , 

• the remaining part of the population consists of randomly generated 15 points: 
BApopC −−= . 
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In subsequent iterations, the position of the points from each population is 

changed in accordance with the operation of the PSO algorithm. 

The following inertia weights have been analyzed during the test [10-13]: 

1. 
MaxIt

ItMaxIt
w

−

=
1 , (3) 

2. ( ) ( ) dampwiwiw 22 1 =+ , ( ) 11
2
=w , (4) 

3. 7.0
3
=w , (5) 

4. 
2

5.0
4

r

w += , (6) 

5. 
MaxIt

Itww
ww

)( minmax

max5

−

−= , (7) 

6. 



















−=

b

MaxIt

It
aww exp06 , (8) 

The variables in formulas (3)-(8) denote: MaxIt - maximum number of iterations 

(MaxIt = 300), It - current iteration, wdamp - damping factor (wdamp = 0.98), r - random 

numbers from the interval [0,1], a - local search attractor (a = 3), b - global search 

attractor (b = 1), w0 - initial inertia weight (w0 = 0.9), wmax - maximum value of the 

inertia weight (wmax = 1), wmin - minimum value of the inertia weight (wmin = 0.3). 

Figure 4 shows all weights accepted for calculation. Each of the inertia weights 

(except for the fourth) is identical for each calculation attempt, since the fourth  

inertia weight is so-called noise in the range [0.5;1]. 

 

 

Fig. 4. Inertia weights 
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3. The sample numerical results  

Each test for the adopted n% of population, for each inertia weight has been  

repeated ten times. It was assumed that the number of iterations is 300 and the 

population is 150. The results from the calculations are summarized in Tables 1-3. 

Table 1. Length of trajectory for 20% of accepted population 

 w
1
 w

2
 w

3
 w

4
 w

5
 w

6
 

L [mm] 

2041,38 1978,84 2142,56 2003,59 2541,56 2042,06 
1978,34 2151,70 2255,30 1977,56 2141,44 2051,65 
2267,02 1978,82 2043,45 2149,59 2041,94 2043,59 
2042,44 2044,54 2037,73 2193,50 2266,04 2185,41 
2191,74 1974,69 1977,43 2333,11 1975,34 2147,14 
2427,21 1983,95 2046,58 1978,09 2042,71 2191,27 
2187,23 2197,23 2298,93 2189,38 2057,13 2046,88 
1978,33 2081,48 2290,99 2512,36 2188,47 1975,94 
1975,80 1976,70 2190,03 2194,30 1976,64 2665,68 
2141,42 2032,91 1975,21 2249,58 2041,50 1976,60 

Table 2. Length of trajectory for 60% of accepted population 

 w
1
 w

2
 w

3
 w

4
 w

5
 w

6
 

L [mm] 

2189,70 1975,43 1980,10 1976,64 1978,83 1975,56 
1976,22 2040,13 2027,49 1978,35 2028,51 2195,18 

1974,37 1982,43 2029,75 1981,49 2033,99 2525,41 
2047,40 1976,10 2141,54 2043,92 2358,57 2059,93 
2242,70 2062,55 1976,95 1974,45 1975,48 1977,22 
1975,06 2010,17 1975,88 1977,76 1976,73 2188,88 
1975,61 2043,25 1975,21 1976,97 1976,60 2201,67 
1986,50 2264,59 2188,52 1974,87 2541,85 2194,03 
2336,88 2190,35 2188,52 2063,96 1974,80 2044,47 
1974,75 2044,91 2317,06 2196,02 1978,65 2188,90 

Table 3. Length of trajectory for 100% of accepted population 

 w
1
 w

2
 w

3
 w

4
 w

5
 w

6
 

L [mm] 

1983,07 2039,97 1983,12 1981,22 1982,92 1983,93 
1978,31 2243,99 1983,83 1981,20 1984,99 1978,80 
1979,83 2441,41 1983,99 1984,57 1980,19 1983,40 
1982,61 1985,52 1982,29 1982,61 2240,56 1984,00 
1986,93 1984,71 1983,96 2009,57 1983,67 1981,89 
1981,48 2912,43 2242,48 1983,62 1983,14 1984,76 
1982,94 2197,19 2225,60 1982,78 1982,55 1978,54 
1988,51 1986,93 2220,23 1983,41 1974,75 2013,83 
1983,83 1992,81 1977,02 2021,78 1975,50 1979,43 
1985,19 2087,65 1979,09 1982,90 1986,73 1976,91 
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In the presented results (Tables 1-3), the PSO algorithm finds the shortest tra-

jectory in the range [1974; 1985], this discrepancy is due to an insufficient number 

of iterations. 

In the assumed population, 20% the shortest trajectory is found for the second 

weight (w2) L = 1974.69 mm, for this inertia weight half of the sought trajectory 

can be considered as the shortest. In the case of the other inertia weights, they have 

two of the shortest trajectories, and for w1 there are three trajectories. 

In the case of 60% of the population, the shortest trajectory is for the first inertia 

weight (w1) L = 1974.37 mm. Furthermore for that inertia weight, half of the 

sought trajectories are the best solutions. Weights w4 and w5 are characterized by 

the largest number of shortest found trajectories, because they have 7 and 6 of  

these trajectories respectively. 

The algorithm (for the results shown in Table 3) could not find a global mini-

mum due to the fact that the entire population has reached the same trajectory al-

most at the beginning of the algorithm's operation. This is the result of the adoption 

of 149 populations (n = 100%) and one population connecting the starting point 

with the ending point (straight segment) - no drawing of intermediate points for  

the population in the first iteration. 

Figure 5 shows the shortest found trajectory (n = 60%, w1). 

 

 

Fig. 5. The shortest found trajectory 

4. Conclusions 

The results obtained in this work can be useful in the selection of the inertia 

weight in the Particle Swarm Optimization algorithm. The inertia weight has  

a significant impact on the results of calculations. The use of the PSO method  

allows one to determine the optimal new trajectory or to correct an existing path  

in any working space with obstacles. 
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In the case of searching for a completely new trajectory, the first population 

should be avoided by providing the coordinates of the auxiliary points, which 

should be generated randomly. 

However, when it is only necessary to correct the trajectory (e.g. positions  

of obstacle or their size have been changed), we can avoid drawing of the points 

and introducing their coordinates independently into the algorithm. In addition,  

an appropriate number of constant population (ideally within n = 60%) should be 

adopted based on the existing trajectory. In the variants n = 20% and n = 100%,  

the algorithm has too little or too many imposed population, so it does not improve 

the existing trajectory, it only looks for a new one or makes changes but to a small 

extent. 

In algorithms in which weight factors are used, a number of tests should always 

be carried out before the final research to select the parameters of algorithm and 

applied weights. 

In future studies, the authors plan to use obstacles with the irregular shape. 
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