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Abstract. In this paper, we prove the existence and uniqueness of a positive solution for
a boundary value problem of nonlinear fractional differential equations involving a Caputo
fractional operator with integral boundary conditions. The technique used to prove our
results depends on the upper and lower solution, the Schauder fixed point theorem and the
Banach contraction principle. The result of existence obtained through constructing the
upper and lower control functions of the nonlinear term without any monotone requirement.
Illustrative examples are provided.
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1. Introduction

In recent years, the theory of fractional differential equations has attracted con-
siderable interest in mathematics and many applications such as physics, mechanics,
chemistry, engineering, etc. For more details, see the monographs of Hilfer [1], Kil-
bas et al. [2], Miller and Ross [3], Podlubny [4] and Samko et al. [5]. Many interesting
results of the existence of positive solutions of various classes of fractional differen-
tial equations with or without the integral boundary condition have been discussed.
Among these works (see [6–17]) and the references therein. For example in [12],
Nan and Wang studied the existence and uniqueness of a positive solution for the
following nonlinear fractional differential equations

Dα

0+u(t) = f (t,u(t)), t ∈ [0,1] (1)

u(0) = 0, (2)
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where 0 < α < 1, Dα

0+ is the standard Riemann-Liouville fractional derivative and
f : [0,1]×R+ −→ R+ is continuous. The authors used the method of upper and
lower solutions and Schauder fixed point theorem to prove their results without any
monotone requirement on the nonlinear term. Wang et al. in [14], discussed the
existence of solutions of the following fractional differential equations with integral
boundary conditions

Dαu(t) = f (t,u(t)), t ∈ [0,T ], (3)

u(0) = λ

∫ T

0
u(s)ds+d, (4)

where 0 < α < 1, λ ≥ 0, Dα is the standard Riemann-Liouville fractional derivative
and f : [0,T ]×R −→ R is continuous. The authors applied the upper and lower
solutions combined with a monotone iterative technique to obtain their results.

Nanware and Dhaigude in [18], obtained the existence and uniqueness of solution
of the problem (3)-(4) by monotone iterative method without locally Holder conti-
nuity. Motivated by the above works, and inspired [12], in this paper, we used the
upper and lower solution method, Schauder’s fixed point theorem and Banach con-
traction principle to obtain the existence and uniqueness of a positive solution for the
following fractional differential equations with integral boundary conditions

cDα

0+u(t) = f (t,u(t)), t ∈ [0,1], (5)

u(0) = λ

∫ 1

0
u(s)ds+d, (6)

where 0 < α < 1, λ ≥ 0, d ∈ R+, cDα

0+ is the standard Caputo fractional operator
and f : [0,1]×R+ −→ R+ is continuous.

The paper is organized into five sections. In Section 2, the concepts of Caputo,
Riemann-Liouville types with its properties and fixed point theorems are presented.
In Section 3, the existence and uniqueness of positive solution to (5)-(6) are proved.
In Section 4, the examples illustrative are provided. Finally, the conclusion is given
in Section 5.

2. Preliminaries

In this section, we recall some basic definitions and necessary lemmas related to
fractional calculus and fixed point theorems that will be used throughout this paper.

Let C[0,1] be the Banach space endowed with the infinity norm and K a nonempty
closed subset of C[0,1] defined as

K = {u(t) ∈C[0,1] : u(t)≥ 0, 0≤ t ≤ 1}.
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Cn[0,1] denotes the class of all real valued functions defined on [0,1] which have
a continuous n th order derivative.

Definition 1. [2]. The left sided Riemann-Liouville fractional integral of order
α > 0 of a function g ∈C[0,1] is given by

Iα

0+g(t) =
1

Γ(α)

∫ t

0
(t− s)α−1g(s)ds, t > 0,

where Γ denotes the Gamma function. 2

Definition 2. [2]. Let n− 1 < α < n. The left sided Riemann-Liouville fractional
derivative of order α of a function g : [0,1]→ R defined by

Dα

0+g(t) =
dn

dtn In−α

0+ g(t), t > 0,

provided the right side integral is pointwise defined on [0,1] and n = [α] + 1,
[α] denotes the integer part of the real number α .

In particular, If 0 < α < 1, then Dα

0+g(t) =
d
dt

I1−α

0+ g(t), t > 0. 2

Definition 3. [2]. Let n−1 < α < n. The left sided Caputo derivative of order α of
a function g ∈Cn[0,1] is given by

cDα

0+g(t) = In−α

0+
dn

dtn g(t), t > 0.

In particular, If 0 < α < 1 then

cDα

0+g(t) = I1−α

0+
d
dt

g(t), t > 0.

Moreover, Caputo’s derivative of a constant is equal to zero. 2

Lemma 1. [19]. Let g ∈Cn[0,1] and α > 0. Then

1. cDα

0+Iα

0+g(t) = g(t).

2. Iα

0+
cDα

0+g(t) = g(t)−
n−1

∑
k=0

g(k)(0+)
k!

tk. In particular, if 0 < α < 1 we have

Iα

0+
cDα

0+g(t) = g(t)−g(0).

Theorem 1. [20]. (Banach contraction principle). Let (X ,d) be a non-empty com-
plete metric space with a contraction mapping P : X → X. Then, P has a unique
fixed-point x in X (i.e. Px = x). 2
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Theorem 2. [20]. (Schauder fixed point theorem). Let X be a Banach space and let
A a closed convex, bounded subset of X. If P : A−→ A is a continuous map such that
the set {Px : x ∈ A} is relatively compact in X. Then P has at least one fixed point. 2

Definition 4. A function u ∈C[0,1]∩C1[0,1] is said to be a solution of (5)-(6) if u
satisfies the equation cDα

0+u(t) = f (t,u(t)), t ∈ [0,1], with integral boundary condi-

tions u(0) = λ

∫ 1

0
u(s)ds+d. 2

Definition 5. A function u∈C[0,1]∩C1[0,1] is called a positive solution of the prob-
lem (5)-(6) if u(t)≥ 0 for all t ∈ [0,1] and u satisfies the problem (5)-(6). 2

Definition 6. Let a,b∈R+, and b> a. For any u∈ [a,b], we define the upper-control
function H(t,u) = sup

a≤η≤u
f (t,η), and lower-control function h(t,u) = inf

u≤η≤b
f (t,η).

Obviously, H(t,u) and h(t,u) are monotonous non-decreasing on u and

h(t,u)≤ f (t,u)≤ H(t,u).

Definition 7. Let ũ(t), û(t) ∈ K and a≤ û(t)≤ ũ(t)≤ b satisfy

cDα

0+ ũ(t)≥ H(t, ũ(t)), t ∈ [0,1], (7)

ũ(0)≥ λ

∫ 1

0
ũ(s)ds+d,

or

ũ(t)≥ 1
Γ(α)

∫ t

0
(t− s)α−1H(t, ũ(t))ds+λ

∫ 1

0
ũ(s)ds+d, t ∈ [0,1].

and

cDα

0+ û(t)≤ h(t, û(t)), t ∈ [0,1], (8)

û(0)≤ λ

∫ 1

0
û(s)ds+d,

or

û(t)≤ 1
Γ(α)

∫ t

0
(t− s)α−1h(t, û(t))ds+λ

∫ 1

0
û(s)ds+d, t ∈ [0,1].

Then the functions ũ(t) and û(t) are called upper and lower solutions, respectively
for problem (5)-(6). 2
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3. Main results

In this section, we shall give existence and uniqueness results of (5)-(6) and prove
it. Before starting and proving the main results, we introduce the following lemma:

Lemma 2. Assume that f (t,u(t)) ∈ C([0,1],R+), then u(t) ∈ C[0,1] ∩C1[0,1] is
a solution of the boundary value problem (5)-(6) if and only if u(t) is a solution
of the integral equation

u(t) =
1

Γ(α)

∫ t

0
(t− s)α−1 f (s,u(s))ds+λ

∫ 1

0
u(s)ds+d, t ∈ [0,1]. (9)

PROOF. Suppose u(t) satisfies the problem (5)-(6), then applying Iα

0+ to both sides of
Eq. (5), we have

Iα

0+
cDα

0+u(t) = Iα

0+ f (t,u(t)).

In view of Lemma 1 and the integral boundary condition Eq. (6), we get

u(t) =
1

Γ(α)

∫ t

0
(t− s)α−1 f (s,u(s))ds+λ

∫ 1

0
u(s)ds+d, t ∈ [0,1].

Conversely, suppose u(t) satisfies Eq. (9). By Definition 3 and Lemma 1, then for
t ∈ [0,1], we observe that

cDα

0+u(t) = cDα

0+

(
1

Γ(α)

∫ t

0
(t− s)α−1 f (s,u(s))ds+λ

∫ 1

0
u(s)ds+d

)
= cDα

0+Iα

0+ f (t,u(t))+ cDα

0+

(
λ

∫ 1

0
u(s)ds+d

)
= f (t,u(t)).

Moreover, the integral boundary condition u(0) = λ

∫ 1

0
u(s)ds+d holds. �

The first result shows that P : K → K is compact. Here, consider the operator
P : K→ K defined by

Pu(t) =
1

Γ(α)

∫ t

0
(t− s)α−1 f (s,u(s))ds+λ

∫ 1

0
u(s)ds+d, t ∈ [0,1]. (10)

Lemma 3. Assume that f ∈C([0,1],R+). Then the mapping P : K→K is compact.2

PROOF. The operator P : K→ K is continuous in view of the hypothesis of nonneg-
ativeness and continuity of f (t,u).

Let S ⊂ K be bounded, which is to say there exists a constant M > 0 such that
‖u‖ ≤M for all u ∈ S, and let the function f : [0,1]×S→ R be bounded by L i.e.

L = max
(t,u)∈[0,1]×[0,M]

f (t,u(t))+1.
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From Eq. (10), then for any u ∈ S and for each t ∈ [0,1], we have

|(Pu)(t)| =

∣∣∣∣ 1
Γ(α)

∫ t

0
(t− s)α−1 f (s,u(s))ds+λ

∫ 1

0
u(s)ds+d

∣∣∣∣
≤ 1

Γ(α)

∫ t

0
(t− s)α−1 | f (s,u(s))|ds+λ

∫ 1

0
|u(s)|ds+d

≤ Ltα

Γ(α +1)
+λM+d.

Thus,

‖Pu‖ ≤ L
Γ(α +1)

+λM+d.

Hence, P(S) is uniformly bounded.
Now, we will prove that the operator P is equicontinuous. For each u ∈ S.

Then for t1, t2 ∈ [0,1] with t1 < t2, we have

|(Pu)(t1)− (Pu)(t2)|

=

∣∣∣∣ 1
Γ(α)

∫ t1

0
(t1− s)α−1 f (s,u(s))ds− 1

Γ(α)

∫ t2

0
(t2− s)α−1 f (s,u(s))ds

∣∣∣∣
=

∣∣∣∣ 1
Γ(α)

∫ t1

0
(t1− s)α−1 f (s,u(s))ds− 1

Γ(α)

∫ t1

0
(t2− s)α−1 f (s,u(s))ds

+
1

Γ(α)

∫ t1

0
(t2− s)α−1 f (s,u(s))ds− 1

Γ(α)

∫ t2

0
(t2− s)α−1 f (s,u(s))ds

∣∣∣∣
=

∣∣∣∣ 1
Γ(α)

∫ t1

0
(t1− s)α−1 f (s,u(s))ds− 1

Γ(α)

∫ t1

0
(t2− s)α−1 f (s,u(s))ds

− 1
Γ(α)

∫ t2

t1
(t2− s)α−1 f (s,u(s))ds

∣∣∣∣
≤ 1

Γ(α)

∫ t1

0

∣∣(t1− s)α−1− (t2− s)α−1∣∣ | f (s,u(s))|ds

+
1

Γ(α)

∫ t2

t1
(t2− s)α−1 | f (s,u(s))|ds

≤ L
Γ(α)

∫ t1

0

(
(t1− s)α−1− (t2− s)α−1)ds+

L
Γ(α)

∫ t2

t1
(t2− s)α−1ds

≤ L
Γ(α +1)

(tα
1 +(t2− t1)α − tα

2 +(t2− t1)α)

≤ 2L
Γ(α +1)

(t2− t1)α . (11)

As t1→ t2, the right-hand side of the inequality Eq. (11) tends to zero and the con-
vergence is independent of u in S, which means that P(S) is equicontinuous. Thus,
the compactness of P follows by Ascoli Arzela’s theorem. �
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The second result proves an existence of the solution of problem (5)-(6) by means
of the Schauder fixed point theorem.

Theorem 3. Assume that f : [0,1]×R+→R+ is continuous, and ũ(t), û(t) are upper
and lower solutions of problem (5)-(6). Then there exists at least a solution u(t) of
the integral boundary value problem (5)-(6). Moreover,

û(t)≤ u(t)≤ ũ(t), t ∈ [0,1].

PROOF. Define the set

Λ = {v(t) : v(t) ∈ K, û(t)≤ v(t)≤ ũ(t), t ∈ [0,1]},

endowed with norm ‖v(t)‖ = max
t∈[0,1]

|v(t)| ≤ b. Hence Λ is a convex, closed and

bounded subset of the Banach space C([0,1],R+). According to Lemma 3, the oper-
ator P : K→ K is compact. To apply Schauder’s fixed point theorem, we need only
to prove P : Λ→ Λ. Indeed, for any v(t) ∈ Λ, then û(t) ≤ v(t) ≤ ũ(t) and by the
Definitions 6, 7, we have

Pv(t) =
1

Γ(α)

∫ t

0
(t− s)α−1 f (s,v(s))ds+λ

∫ 1

0
v(s)ds+d

≤ 1
Γ(α)

∫ t

0
(t− s)α−1H(s,v(s))ds+λ

∫ 1

0
v(s)ds+d

≤ 1
Γ(α)

∫ t

0
(t− s)α−1H(s, ũ(s))ds+λ

∫ 1

0
ũ(s)ds+d

≤ ũ(t)

and

Pv(t) =
1

Γ(α)

∫ t

0
(t− s)α−1 f (s,v(s))ds+λ

∫ 1

0
v(s)ds+d

≥ 1
Γ(α)

∫ t

0
(t− s)α−1h(s,v(s))ds+λ

∫ 1

0
v(s)ds+d

≥ 1
Γ(α)

∫ t

0
(t− s)α−1h(s, û(s))ds+λ

∫ 1

0
û(s)ds+d

≥ û(t).

Therefore, û(t) ≤ Pv(t) ≤ ũ(t), 0 ≤ t ≤ 1 which implies that Pv(t) ∈ Λ for all
t ∈ [0,1]. This proves that P : Λ→ Λ.

As consequence of Theorem 2, the operator P has at least one fixed point u(t)∈Λ,
0 ≤ t ≤ 1. Therefore, the integral boundary value problem (5)-(6) has at least one
solution u(t) ∈C[0,1] and ũ(t)≥ u(t)≥ û(t), t ∈ [0,1]. �

The final result is based on the Banach contraction principle.



12 M.S. Abdo, H.A. Wahash, S.K. Panchal

Theorem 4. Assume that f : [0,1]×R+→ R+ is continuous and there exists a con-
stant ` > 0 such that

‖ f (t,u)− f (t,v)‖ ≤ `‖u− v‖ , t ∈ [0,1], u,v ∈C[0,1].

If
(

`

Γ(α +1)
+λ

)
< 1. Then the problem (5)-(6) has a unique solution

u(t) ∈C[0,1]. 2

PROOF. Theorem 3 shows that the problem (5)-(6) has at least one positive solution
in Λ given by

u(t) =
1

Γ(α)

∫ t

0
(t− s)α−1 f (s,u(s))ds+λ

∫ 1

0
u(s)ds+d, t ∈ [0,1].

Hence, we need only to prove that the operator P defined by

(Pu)(t) =
1

Γ(α)

∫ t

0
(t− s)α−1 f (s,u(s))ds+λ

∫ 1

0
u(s)ds+d, t ∈ [0,1] (12)

is contract in C[0,1]. Indeed, by Eq. (12), then for u1,u2 ∈C[0,1] and t ∈ [0,1], we
have

‖(Pu1)(t)− (Pu2)(t)‖

≤ 1
Γ(α)

∫ t

0
(t− s)α−1 ‖ f (s,u1(s))− f (s,u2(s))‖ds+λ

∫ 1

0
‖u1(s)−u2(s)‖ds

≤ `

Γ(α)

∫ t

0
(t− s)α−1 ‖u1(s)−u2(s)‖+λ

∫ 1

0
‖u1(s)−u2(s)‖ds

≤
(

`

Γ(α +1)
+λ

)
‖u1(t)−u2(t)‖ .

Since
(

`

Γ(α +1)
+λ

)
< 1, then P is contraction mapping. As consequence of

Theorem 1, we can conclude that P has a unique fixed point which is the unique
solution of (5)-(6) on [0,1]. �

4. Examples

In this section, we give two examples to illuminate our results.

Example 1. Consider the fractional differential equation with integral boundary con-
dition

cD
1
2
0+u(t) = 1+

u(t)
(1+ sin(u(t)))

, t ∈ [0,1], (13)
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u(0) =
2
3

∫ 1

0
u(s)ds+

1
2
. (14)

For 0 < u,v <+∞, and for t ∈ [0,1], we have

‖ f (t,u(t))− f (t,v(t))‖ ≤
∥∥∥∥ u(t)− v(t)
(1+ sin(u(t)))(1+ sin(v(t)))

∥∥∥∥≤ 1
4
‖u(t)− v(t)‖ .

Therefore, the condition
(

`

Γ(α +1)
+λ

)
< 1 holds with α =

1
2
, ` =

1
4

and

λ =
2
3

. Indeed,

(
1
4

Γ(1
2 +1)

+
2
3

)
' 0.9< 1. By Theorem 1, the fractional differential

eqaution (13)-(14) has the unique positive solution u(t) ∈C[0,1]. 2

Example 2. Consider the fractional differential equation with integral boundary con-
dition

cD
1
3
0+u(t) =

1
2

sin t, t ∈ [
1
2
,1], (15)

u(0) =
1
4

∫ 1

1
2

u(s)ds, (16)

where λ =
1
4

and d = 0.
Using the Laplace transform of the Caputo fractional derivative, we get

u(t) =
1
2

t
3
2 E2, 5

2
(−t2)+0.0636753,

where Eα,β (z) =
∞

∑
k=0

zk

Γ(αk+β )
, z ∈ C, is called the Mittage-Leffler function.

It is clear via Theorem 4 and Theorem 3 that the above problem (15)-(16) has

a unique positive solution u(t) ∈ C[
1
2
,1], t ∈ [

1
2
,1]. Moreover, û(t) ≤ u(t) ≤ ũ(t)

where

ũ(t) =
1
2

t
3
2 E2, 5

2
(−t2)+1 and û(t) =

1
2

t
3
2 E2, 5

2
(−t2)

are respectively the upper and lower solutions of the problem (15)-(16). 2

5. Conclusions

We can conclude that the main results of this article have been successfully
achieved, that is, through the Banach fixed point theorem and the Schauder fixed point
theorem, extremely important results within the mathematical analysis, we scruti-
nized the existence and uniqueness of positive solution of the Integral boundary value
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problem for nonlinear fractional differential equation introduced by the Caputo frac-
tional derivative. The result of existence obtained through the constructing the upper
and lower control functions of the nonlinear term without any monotone requirement
as opposed to what has already been studied by Wang et al. in [14] and Nanware et al.
in [18]. This paper contributes to the growth of fractional calculus, especially in the
case of fractional differential equations involving a Caputo fractional derivative with
integral boundary conditions. There are some articles that carried out a brief study on
the existence and uniqueness of solutions of fractional differential equations, and one
of the objectives of this paper is to contribute so that it can have a greater extent of
studies within the mathematical analysis related to fractional differential equations.
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