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Abstract. This paper proposes a method to numerically study viscous incompressible
two-dimensional steady flow in a driven square cavity with heat and concentration sources
placed on its side wall. The method proposed here is based on streamfunction-vorticity
(ψ − ξ ) formulation. We have modified this formulation in such a way that it suits to
solve the continuity, x and y-momentum, energy and mass transfer equations which are the
governing equations of the problem under investigation in this study. No-slip and slip wall
boundary conditions for velocity, temperature and concentration are defined on walls of
a driven square cavity. In order to numerically compute the streamfunction ψ , vorticityfunc-
tion ξ , temperature θ , concentration C and pressure P at different low, moderate and high
Reynolds numbers, a general algorithm was proposed. The sequence of steps involved in
this general algorithm are executed in a computer code, developed and run in a C compiler.
We propose that, with the help of this code, one can easily compute the numerical solutions
of the flow variables such as velocity, pressure, temperature, concentration, streamfunction,
vorticityfunction and thereby depict and analyze streamlines, vortex lines, isotherms and
isobars, in the driven square cavity for low, moderate and high Reynolds numbers. We have
chosen suitable Prandtl and Schmidt numbers that enables us to define the average Nusselt
and Sherwood numbers to study the heat ad mass transfer rates from the left wall of the
cavity. The stability criterion of the numerical method used for solving the Poisson, vorticity
transportation, energy and mass transfer has been given. Based on this criterion, we ought
to choose appropriate time and space steps in numerical computations and thereby, we may
obtain the desired accurate numerical solutions. The nature of the steady state solutions of
the flow variables along the horizontal and vertical lines through the geometric center of the
square cavity has been discussed and analyzed. To check the validity of the computer code
used and corresponding numerical solutions of the flow variables obtained from this study,
we have to compare these with established steady state solutions existing in the literature and
they have to be found in good agreement.
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1. Introduction

Viscous flow in a driven square cavity with heat and concentration sources on
its side wall is an important phenomenon in the engineering system. In the recent
past, this problem has drawn wide attention due to its extensive engineering appli-
cations such as solar collectors, cooling of containment buildings, room ventilations,
lubrications and drying technologies, electronic packaging and ignition of solid fuels.
Since people spent most of their time indoors, the indoor air environment is receiving
increasing concern as it is closely related to health comfort and productivity of the
occupants. Some applications of heat and concentration sources are cooking, smok-
ing, burning furnace, blazing window, office automation equipment, which continu-
ously produce allergens, heat, gas components and volatile organic compounds.

Computations of unsteady, natural convection in an enclosure by using finite-
differences was presented by Torrance [1]. Natural convection in an enclosure with
localized heating from below was numerically studied by Torrance and Rockett [2].
Axisymmetric eddies in a rotating stream have been investigated by Kopecky and
Torrance [3]. Viscous flow in a square cavity was numerically studied by Bozeman
and Dalton [4]. The multigrid method to determine high-resolutions for 2-D incom-
pressible Navier-Stokes equations was presented by Ghia et al. [5]. A Bench mark
numerical solution for the problem of natural convection of air in a square cavity has
been proposed by Davis [6]. Li et al. [7] have proposed a compact fourth order finite
difference scheme for the steady incompressible Navier-Stokes equations. Tian and
Ge [9] have proposed a fourth-order compact finite difference scheme on the nine-
point 2-D stencil for solving the steady-state Navier-Stokes/Boussinesq equations.
Zhang [10] has numerically simulated the 2-D square driven cavity flow at low and
high Reynolds numbers.

Mixed convection in a differentially heated square cavity was investigated by
Oztop and Dagtekin [11]. Deng et al. [12] have investigated the effects of heat and
mass transport of double-diffusive mixed convection in a ventilated enclosure.
Erturk et al. [13] have proposed numerical solutions of a 2-D steady incompressible
flow in a driven cavity. Numerical solutions of a 2-D steady incompressible flow in
a driven skewed cavity was investigated by Erturk and Dursun [14]. Natural convec-
tion in a rectangular cavity with partially active side walls was studied by Nithyadevi
et al. [15]. Kandaswamy et al. [17] have investigated natural convection in enclosures
with partially thermally active side walls containing internal heat sources. Double-
diffusive mixed convective flow in a rectangular enclosure was numerically simulated
by Teamah and Maghlany [18]. Tian and Yu [19] have proposed an efficient compact
finite difference scheme for steady incompressible Navier-Stokes equations. Laminar
mixed convection flow in the presence of a magnetic field in a top sided lid-driven
cavity heated by a corner heater was investigated by Oztop et al. [20].

Alam et al. [21] have numerically investigated natural convection in a rectangular
enclosure with partial heating and cooling at vertical walls. Buoyancy driven natu-
ral convection in an enclosure with two discrete heating from below was studied by
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Zaman et al. [22]. Natural convection in a rectangular enclosure by a discrete heat
source was presented computationally by Qarnia et al. [23]. Ambethkar and Manoj
Kumar [24] have presented numerical solutions of a 2-D incompressible flow in
a driven square cavity. Alleborn et al. [25] have investigated a lid-driven cavity with
heat and mass transport. Ambethkar et al. [26] have investigated numerical solutions
of a 2-D incompressible flow in a driven square cavity using streamfunction-vorticity
formulation. Nithyadevi et al. [27] have investigated the effect of a Prandtl number
on natural convection in a rectangular enclosure with discrete heaters. The solutions
of a 2-D steady incompressible viscous flow with heat transfer in a driven square cav-
ity using streamfunction-vorticity formulation was studied by Ambethkar and Manoj
Kumar [28] numerically. Lax and Richtmyer [29] have presented a survey on the
stability of linear finite difference equations.

The present review of literature cited above revealed the research progress made
on natural convection and mixed convective flow in rectangular enclosures. In ad-
dition, it has also thrown some light on highly accurate numerical solutions using
efficient compact numerical schemes for natural and mixed convective flows. How-
ever, in these investigations, the objective was to study the heat transfer rate and
therefore, only the availability of heat sources have been considered on the walls of
the rectangular enclosures. But no attempt has been made to consider concentration
sources on the walls that allow for the study of mass transfer rate. Moreover, existing
relevant literature doesn’t reveal availability of a method that solves the continuity, x
and y-momentum, energy and mass transfer equations which are the governing equa-
tions of a 2-D steady viscous incompressible flow in a driven square cavity with heat
and concentration sources on its side wall. Since heat and concentration sources usu-
ally co-exist indoors as evidenced by numerous applications mentioned above, the
present work is to propose a method that allows for the investigation of the problem
of a 2-D steady viscous incompressible flow in a driven square cavity with heat and
concentration sources on its side wall. To the best of our knowledge, this problem
has never been attempted to investigate. So, we have been motivated to attempt to
solve this problem in the present work.

The objective of this paper is to propose a method to study a numerically, viscous
incompressible two-dimensional steady flow in a driven square cavity with heat and
concentration sources placed on its side wall. The method proposed here is based
on streamfunction-vorticity (ψ − ξ ) formulation. We have modified this formula-
tion in such a way that it suits to solve the continuity, x and y-momentum, energy
and mass transfer equations which are the governing equations of the problem un-
der investigation in this study. In order to compute numerically, the streamfunction
ψ , vorticityfunction ξ , temperature θ , concentration C and pressure P at different
low, moderate and high Reynolds numbers, a general algorithm was proposed. The
sequence of steps involved in this general algorithm is executed in a computer code,
developed and run in a C compiler. The stability criterion of the numerical method
used for solving the Poisson, vorticity transportation, energy and mass transfer has
been given. Based on this criterion, we ought to choose appropriate time and space
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steps in numerical computations and thereby, we may obtain the desired accurate
numerical solutions.

2. Mathematical formulation

2.1. Geometry description

The geometry of steady, 2-D incompressible viscous flow in a driven square cav-
ity ABCD with heat and concentration sources placed on its side wall is shown in
Figure 1. No-slip boundary conditions for velocity component v is considered on all
four sides of the square cavity. No-slip boundary conditions for temperature θ and
concentration C are considered on walls AD, DC and BC. Slip boundary condition
for velocity u = 10, u =−10 is considered on walls AD and BC. The wall tempera-
ture and concentration of θ = 100 and C = 100 are considered on wall AB. At all the
four corner points of the square cavity, the velocity components (u,v), temperature
θ , concentration C and pressure P assumed to be vanished.

Fig. 1. Schematic diagram of the physical problem

2.2. Governing equations

The problem under consideration is governed by the equation of continuity, x and
y components of momentum equations, equations of energy and mass transfer. In
dimensional form, these equations can be written as follows:

Continuity equation:
∂U
∂X

+
∂V
∂Y

= 0, (1)

x-momentum equation: U
∂U
∂X

+V
∂U
∂Y

=− 1
ρ

∂ p
∂X

+ν

(
∂ 2U
∂X2 +

∂ 2U
∂Y 2

)
, (2)



A numerical method for viscous flow in a driven cavity with heat and concentration sources placed. . . 21

y-momentum equation: U
∂V
∂X

+V
∂V
∂Y

=− 1
ρ

∂ p
∂Y

+ν

(
∂ 2V
∂X2 +

∂ 2V
∂Y 2

)
, (3)

Energy equation: U
∂T
∂X

+V
∂T
∂Y

= α

(
∂ 2T
∂X2 +

∂ 2T
∂Y 2

)
, (4)

Concentration equation: U
∂c
∂X

+V
∂c
∂Y

= D
(

∂ 2c
∂X2 +

∂ 2c
∂Y 2

)
. (5)

where U , V , p, T , α , ν , c, ρ and D are the velocity components along the x and y axis,
pressure, temperature, thermal diffusivity, kinematic viscosity, concentration, density
and mass diffusivity respectively. Using the following dimensionless variables:

(x,y) =
(X ,Y )u0

ν
, (u,v) =

(U,V )

u0
, P =

p
ρu2

0
, θ =

T −Tc

Th−Tc
,

C =
c− cc

ch− cc
, Pr =

ν

α
, Sc =

ν

D
, Re =

u0L
ν

.

The boundary conditions in dimensional form are

left wall on AB: at X = 0, U =V = 0, T = 100Th, c = 100ch

right wall on DC: at X = L, U =V = 0, T = Tc, c = cc

top wall on AD: at Y = L, U = 10u0, V = 0, T = c = 0

bottom wall on BC: at Y = 0, U =−10u0, V = 0, T = c = 0

 (6)

The dimensionless governing equations become

Continuity equation:
∂u
∂x

+
∂v
∂y

= 0, (7)

x-momentum equation: u
∂u
∂x

+ v
∂u
∂y

=−∂P
∂x

+
1

Re

(
∂ 2u
∂x2 +

∂ 2u
∂y2

)
, (8)

y-momentum equation: u
∂v
∂x

+ v
∂v
∂y

=−∂P
∂y

+
1

Re

(
∂ 2v
∂x2 +

∂ 2v
∂y2

)
, (9)

Energy equation: u
∂θ

∂x
+ v

∂θ

∂y
=

1
Pr

(
∂ 2θ

∂x2 +
∂ 2θ

∂y2

)
, (10)

Concentration equation: u
∂C
∂x

+ v
∂C
∂y

=
1
Sc

(
∂ 2C
∂x2 +

∂ 2C
∂y2

)
. (11)

where the non-dimensional variables u, v, P, θ , C, L, u0, Re, Pr and Sc are the
velocity components along the x and y axis, pressure, temperature, concentration,
characteristic length, characteristic velocity, Reynolds number, Prandtl number and
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Schmidt number respectively. The dimensionless boundary conditions reduces to:

left wall on AB: at x = 0, u = v = 0, θ = 100, C = 100

right wall on DC: at x = 1, u = v = 0, θ = 0, C = 0

top wall on AD: at y = 1, u = 10, v = 0, θ =C = 0

bottom wall on BC: at y = 0, u =−10, v = 0, θ =C = 0

 (12)

2.3. Determination of pressure for viscous flow

In the streamfunction-vorticity method, to obtain pressure at each grid point for
viscous flow, it is necessary to solve an additional equation for pressure. This equa-
tion is derived by differentiating the x-momentum equation with respect to x and
y-momentum equation with respect to y and adding them together. By using the equa-
tion of continuity, the resulting equation reduces to

∇
2P = 2

[(
∂u
∂x

)(
∂v
∂y

)
−
(

∂v
∂x

)(
∂u
∂y

)]

or ∇
2P = S, where S = 2

[(
∂ 2ψ

∂x2

)(
∂ 2ψ

∂y2

)
−
(

∂ 2ψ

∂x∂y

)2
]

(13)

Equation (13) is known as Poisson equation for pressure. A suitable second-order
difference representation for the right hand side of equation (13) is given as

Si, j = 2
[(

ψi+1, j−2ψi, j +ψi−1, j

∆x2

)(
ψi, j+1−2ψi, j +ψi, j−1

∆y2

)
−
(

ψi+1, j+1−ψi+1, j−1−ψi−1, j+1 +ψi−1, j−1

4∆x∆y

)2
]
. (14)

3. Numerical method

3.1. Discretization

Our objective in this paper is to propose a numerical method that solves the
equation of continuity, x and y components of momentum equations, equations of
energy and mass transfer subject to the given boundary conditions. Based on stream
function-vorticity (ψ−ξ ) formulation [8, p. 121], the governing equations of a steady
2-D incompressible viscous flow in a driven cavity with heat and concentration
sources on its side wall reduces to:
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∂ 2ψ

∂x2 +
∂ 2ψ

∂y2 =−ξ , (15)

∂ξ

∂ t
=−u

∂ξ

∂x
− v

∂ξ

∂y
+

1
Re

(
∂ 2ξ

∂x2 +
∂ 2ξ

∂y2

)
, (16)

∂θ

∂ t
=−u

∂θ

∂x
− v

∂θ

∂y
+

1
Pr

(
∂ 2θ

∂x2 +
∂ 2θ

∂y2

)
, (17)

∂C
∂ t

=−u
∂C
∂x
− v

∂C
∂y

+
1
Sc

(
∂ 2C
∂x2 +

∂ 2C
∂y2

)
. (18)

Essentially, the system is composed of the Poisson equation for streamfunction (15),
the vorticity-transport equation (16), the energy equation (17) and the mass transfer
equation (18). It is intended to obtain the steady state solution from the discretized
equations of (15) to (18) in a time marching fashion.

To obtain the numerical solutions, the coupled equations (15) and (18) need to
be solved in an iterative manner. Thus, we have used the method developed by Tor-
rance [1] for solving natural convection (Torrance and Rockett [2]) and rotating flow
(Kopecky and Torrance [3]) problems, to carry out the numerical computations of the
unknown flow variables: ψ , ξ , u, v, P, θ and C for the present problem.

Consider a square numerical grid of size 1 × 1 having n horizontal interior grid
lines and an equal number of vertical grid lines as shown in Figure 2. Applying
the second order central difference approximation to both space derivatives in equa-
tion (14).

               A                                                𝑢 = 10, 𝑣 = 0, 𝜃 = 0, 𝐶 = 0                             D 

 

     

𝑢 = 0                                                                                                                                                           𝑢 = 0 

𝑣 = 0                                                                                                                                            𝑣 = 0 

𝜃 = 100                                                                                                                                                         𝜃 = 0 

𝐶 = 100                                                                                                                                                     𝐶 = 0 

 

𝑢𝑢 

                                                                                                                                                                          

 

𝑗 

 

         𝑖            

           B                          𝑢 = −10, 𝑣 = 0, 𝜃 = 0, 𝐶 = 0                                           C    

 

                                                                         (i,n+1) 

                                                (i-1,n)              (i,n)       (i+1,n) 

                                                                         (i,n-1) 

Fig. 2. Finite difference grid of a Square cavity

The discretized Poisson equation (15) for ψ by choosing ∆x = ∆y = h reduces

ψ
t+1
i+1, j +ψ

t+1
i−1, j +ψ

t+1
i, j+1 +ψ

t+1
i, j−1−4ψ

t+1
i, j =−ξ

t+1
i, j h2 (19)

Now, to solve the vorticity-transport equation (16), the energy equation (17) and
the mass transfer equation (18) computationally stable upwind-differencing scheme
is used to approximate the first two terms on the right-hand side of this equation.
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We first define u f and ub as the average x-directional velocities evaluated, respec-
tively, at half a grid point forward and backward from the point (i, j) in x direction,
given as

u f =
1
2
(ui+1, j +ui, j), ub =

1
2
(ui, j +ui−1, j) (20)

and, similarly, for v

v f =
1
2
(vi, j+1 + vi, j), vb =

1
2
(vi, j + vi, j−1) (21)

Further defining,

ξ1 = (u f −|u f |)ξi+1, j +(u f + |u f |−ub + |ub|)ξi, j− (ub + |ub|)ξi−1, j (22)

ξ2 = (v f −|v f |)ξi, j+1 +(v f + |v f |− vb + |vb|)ξi, j− (vb + |vb|)ξi, j−1 (23)

the upwind differencing form is preserved. The terms multiplied by 1
Re are approxi-

mated by central-differencing schemes. For them we let

ξ3 = ξi+1, j +ξi−1, j +ξi, j+1 +ξi, j−1−4ξi, j (24)

Finally, a forward-differencing scheme is used to approximate the time derivative, so
that (

∂ξ

∂ t

)
i, j

=
(ξ
′
i, j−ξi, j)

∆t
(25)

in which ∆t is the size of the time increment and a prime is used to denote the value
of a variable evaluated at time t +∆t. Thus after rearranging terms, (16) becomes

ξ
′
i, j = ξi, j +

∆t
2h

(
−ξ1−ξ2 +2

ξ3

Re h

)
(26)

Similarly, for the energy equation (17) and mass transfer (18), we obtain

θ
′
i, j = θi, j +

∆t
2h

(
−θ1−θ2 +2

θ3

Pr h

)
, C

′
i, j =Ci, j +

∆t
2h

(
−C1−C2 +2

C3

Sc h

)
. (27)
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3.2. Specification of boundary conditions

The specification of boundary conditions on the walls AB, DC, AD and BC are
respectively as follows:

ξ0, j =
2(ψ0, j−ψ1, j +

∂ψ

∂x |0, j∆x)
∆x2 , ξn+1, j =

2(ψn+1, j−ψn, j− ∂ψ

∂x |n+1, j∆x)
∆x2

ξi,n+1 =
2(ψi,n+1−ψi,n− ∂ψ

∂y |i,n+1∆y)

∆y2 , ξi,0 =
2(ψi,0−ψi,1 +

∂ψ

∂y |i,0∆y)

∆y2


Elliptic equations with Neumann boundary conditions for pressure

∂P
∂n

= 0 on all
boundaries, such as the pressure equation (13), present an indeterminate problem, as
the coefficient matrix of the finite-difference representation of the equation has one
zero eigenvalue [30, p. 269]. Consequently, the resulting system of equations are lin-
early dependent and can not be solved uniquely. This can be alleviated by assigning
a constant value to pressure at one reference point in the solution domain. We have
assigned a constant value 5 at one reference point in the solution domain. The result-
ing equation will have a unique solution for an arbitrary value of the constant.

3.3. Stability

The stability of the numerical scheme (24) used in the numerical discretization
has been proved in this section based on the criteria suggested by [30, p. 239].
The equation (24) can be rewritten as

ξ
′
i, j = a1 ξi+1, j +a2 ξi−1, j +a3 ξi, j +a4 ξi, j+1 +a5 ξi, j−1 (28)

where:

a1 =

[
−∆t

2h

(
u f −

∣∣u f
∣∣)+ ∆t

Re h2

]
, a2 =

[
∆t
2h

(ub + |ub|)+
∆t

Re h2

]
,

a3 =

[
1−∆t

{
1

2h

(
u f +

∣∣u f
∣∣−ub + |ub|+ v f +

∣∣v f
∣∣− vb + |vb|

)
+

4
Re h2

}]
,

a4 =

[
−∆t

2h

(
v f −

∣∣v f
∣∣)+ ∆t

Re h2

]
, a5 =

[
∆t
2h

(vb + |vb|)+
∆t

Re h2

]
.

Clearly all the coefficients except for a3 are positive, no matter what the flow direction
is. According to the quasilinear analysis of Lax and Richtmyer [29], the scheme is
stable if every coefficient in (25) is positive or, equivalently, if a3 ≥ 0, which shows
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that this requirement gives the stability criterion that

∆t ≤
[

1
2h

(
u f +

∣∣u f
∣∣−ub + |ub|+ v f +

∣∣v f
∣∣− vb + |vb|

)
+

4
Re h2

]−1

. (29)

Similarly, the stability criteria to the energy and mass transfer equations reduce to

∆t ≤
[

1
2h

(
u f +

∣∣u f
∣∣−ub + |ub|+ v f +

∣∣v f
∣∣− vb + |vb|

)
+

4
Pr h2

]−1

, (30)

∆t ≤
[

1
2h

(
u f +

∣∣u f
∣∣−ub + |ub|+ v f +

∣∣v f
∣∣− vb + |vb|

)
+

4
Sc h2

]−1

. (31)

4. Numerical computations

The numerical computation of the unknown flow variables ψ , ξ , u, v, P, θ and
C for the present problem could be obtained with the aid of a computer programme
developed and run on C compiler. The input data for the relevant parameters in the
governing equations like the Reynolds number Re, Prandtl number Pr and Schmidt
number Sc should be properly chosen to be incompatible with physical significance
of the present problem. The value of the Prandtl number Pr = 6.75 and Sc = 0.60
have been chosen for water.

4.1. General algorithm

The general algorithm for computing the numerical solutions using the proposed
method consists of the following sequence of steps:

Step 1. Specify the initial values for ξ , ψ , u, θ , C and v at time t = 0.

Step 2. Solve equation (16) for ξ at each interior grid point at time t +∆t.

Step 3. Solve equation (17) for θ and (18) for C at each interior grid point at time
t +∆t.

Step 4. Iterate for new ψ values by solving (15) using new ξ values at interior points.

Step 5. Find the velocity components u = ∂ψ

∂y and v =− ∂ψ

∂x .

Step 6. Determine the values of ξ on the boundaries using ψ and ξ values at interior
points.

Step 7. Return to step 2 if the solution is not converged.

Step 8. Solve the Poisson equation (13) for P using the calculated ψ values at each
grid point.
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5. Results and discussion

A numerical method to study viscous, two-dimensional, incompressible, steady
flow in a driven square cavity with heat and concentration sources placed on its side
wall has been proposed in this study. This method, proposed here, has been imple-
mented and verified to be well suited to solve the equation of continuity, x and y
components of momentum equations, equations of energy and mass transfer subject
to the given boundary conditions in this work. The qualitative study of results from
this study is presented in terms of the importance and need of a method that solves
the complex system of semi-linear p.d.e’s along with the given boundary conditions
which defines the physical problem mentioned above at different instances.

In Section 2.2, we have defined the governing equations (1) to (5) in dimensional
form. By defining and using appropriate dimensionless variables and parameters in
the dimensional form of the governing equations, we have obtained and presented
the governing equations (7) to (11) in the dimensionless form. By considering the
concentration source in addition to a heat source on the wall, we obtained an addi-
tional equation (11) with an appropriate boundary condition for concentration vari-
able which needs to be solved in addition to the other three coupled equations subject
to the boundary conditions. The purpose here is to discuss and analyze the flow pat-
terns, isotherms, iso-concentrations for different heating and concentration sections
of the square cavity. The rate of heat and mass transfer in the cavity is measured
in terms of the average Nusselt and Sherwood number. In order to investigate the
qualitative study of these results from this study, the governing equations (7) to (11)
reduces to (15) to (18) [As mentioned in Section 3.1] after using the stream function-
vorticity (ψ−ξ ) formulation [8, p. 121].

Since our target here is to determine the numerical solutions, the coupled equa-
tions need to be solved in an iterative manner. We propose here that one can use the
method of finite differences developed by Torrance [1], Torrance and Rockett [2] for
solving natural convection in an enclosure and Kopecky and Torrance [3] for rotating
flow problems, to carry out the numerical computations of the unknown flow vari-
ables: ψ , ξ , u, v, P in the present problem. To ensure the accuracy of numerical
solutions of these flow variables, we need to establish the stability of the numeri-
cal scheme used in the numerical discretization. We have proved the stability of the
scheme based on the criteria suggested in [29, p. 239]. We have obtained the stabil-
ity criteria for the x- and y-momentum, energy and mass transfer equations based on
the quasilinear analysis of Lax and Richmayer [29]. By choosing appropriate time
and space steps in numerical computations, we obtain the desired accurate numerical
solutions. These results are presented in section 3.3. In section 4.1, we have presented
a general algorithm and the sequence of steps involved that enable us to execute
a computer code developed and run in C compiler. We propose that, with the help of
this code, one can easily compute the numerical solutions of the flow variables such
as velocity, pressure, temperature, concentration, streamfunction, vorticityfunction
and thereby depict and analyze streamlines, vortex lines, isotherms, isobars, in the
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driven square cavity for low, moderate and high Reynolds numbers. We have chosen
suitable Prandtl and Schmidt numbers which enable us to define the average Nusselt
and Sherwood numbers as

Nu =−
∫ 1

0

(
∂θ

∂X

)
X=0

dY, Sh =−
∫ 1

0

(
∂C
∂X

)
X=0

dY

respectively. From this, one can discuss heat and mass transfer rates from the left wall
of the cavity.

6. Conclusions

In this study, we proposed a method to study a numerically, viscous incompress-
ible two-dimensional steady flow in a driven square cavity with heat and concentra-
tion sources placed on its side wall. We have modified the streamfunction-vorticity
(ψ − ξ ) formulation in such a way that it suits to solve the continuity, x and
y-momentum, energy and mass transfer equations which are the governing equations
of the problem under investigation in this study. By defining appropriate
dimensionless variables and parameters and using them in the dimensional form of
the governing equations, we have obtained and presented the governing equations of
the present problem in the dimensionless form. The purpose here is to discuss and
analyze the flow pattern, isotherms, iso-concentrations for different heating and con-
centration sections of the square cavity. The rate of heat and mass transfer in the cav-
ity is measured with the help of the average Nusselt and Sherwood number. We have
obtained the stability criteria for the x and y- momentum, energy and mass transfer
equations based on the quasilinear analysis. We have presented a general algorithm
that enable to execute a computer code developed and run in C compiler. We pro-
pose that, with the help of this code, one can easily compute the numerical solutions
of the flow variables such as velocity, pressure, temperature, concentration, stream
function, vorticity function and thereby depict and analyze streamlines, vortex lines,
isotherms, isobars, in the driven square cavity for low, moderate and high Reynolds
numbers. We propose that the heat and mass transfer rates from the left wall of the
cavity are studied by choosing suitable Prandtl, Schmidt, the average Nusselt and
Sherwood numbers.

Nomenclature

∆x, ∆y grid spacing along x and y-axis
u f , ub average x-directional velocities evaluated at half a grid point

forward and backward from the point (i, j)
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v f , vb average y-directional velocities evaluated at half a grid point
forward and backward from the point (i, j)

|u f |, |ub|, |v f |, |vb| absolute value of u f , ub, v f , vb

ψ
t+1
i, j , ξ

t+1
i, j streamfunction and vorticityfunction at (i, j) node at time t +1

ch, cc concentration at left and right wall of the cavity
Th, Tc hot and cold wall temperature
t, ∇

2 time level and Laplacian operator
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