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Abstract. In this paper we consider the stochastic diffusion process with semi-Markov 

switchings in an averaging scheme. We present results and conditions on convergence to 

the classic diffusion process, in case with semi-Markov process perturbation is uniformly 

ergodic. We used small parameter scheme to get the main result.  
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1. Introduction  

Due to the wide use of stochastic diffusion processes, stability problem arose, 

especially conditions of stability and control of such systems. The paper [1] con-

tains sufficient conditions of stability of stochastic systems via Lyapunov function 

properties and obtained estimates of large deviations of linear diffusion systems. 

Problems of optimal control of diffusion processes are described by stochastic dif-

ferential equations with acceptable control of dedicated work [2]. This generator 

uses a diffusion process, Markov property and martingale characterization of the 

process to test the functions of the Lyapunov type.  

On the other hand, asymptotic behavior is important of diffusion processes that 

are considered in [3] and [4]. For conditions of weak convergence of random proc-

esses in the works [5-7] Korolyuk used method of small parameter and singular 

perturbation problem solution for the construction of the generator limiting proc-

ess. This method is used in the schemes averaging diffusion approximation and as-

ymptotically small diffusion. In particular in the work [6] Korolyuk and Limnios 

examined cases of the random evolution of Markov and semi-Markov switching. 

Construction of semi-Markov processes and investigation of asymptotic proper-

ties of random processes with semi-Markov switching are devoted [8-11].  
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The initial process is weakly convergent to the solution of the diffusion equation 

(to the diffusion process). Such convergence is obtained by using averaging scheme 

[10, 12]. 

Note [13] work which analyzed the asymptotic properties of semi-Markov proc-

esses with a linearly perturbed operator maintainer Markov process through the 

semi-group property. The latest results were developed in [14]. Classification of 

solving of the singular perturbation problem for random processes with semi-Markov 

switching is described at [6] and [15] using of compensating the operator [16]. 

Through compensating the operator [17] one could obtain sufficient conditions for 

stability of random evolution of semi-Markov switching to the diffusion process 

in the balance sheet and the scheme averaging [18].  

The results of these studies have been used in various applications [19-22]. 

2. Problem 

In this paper, we consider dynamical system with semi-Markov switching using 

a small series parameter. ,0),( ≥ttx  is a semi-Markov process in the standard phase 

space of states ),,( ΕX  generated by renewal Markov process ,0,, ≥nx
nn
τ  defined 

by a semi-Markov kernel:  

 ),(),(),,( tGBxPBxtQ
x

=  

where the stochastic kernel  

 ,},{:),(
1

Ε∈=∈=
+

xxxBxPBxP
nn

 

defines an embedded Markov chain )(
nn

xx τ=  at renewal moments:  

 ,0,0,
0

1

=≥=∑
=

τθτ
n

k

kn n  

with intervals kkk ττθ −=
++ 11  between renewal moments. 

n
θ  are defined by the 

distribution functions  

 }.{}{:)(
1

tPxxtPtG
xnnx
≤=≤=

+
θθ  

A semi-Markov process is defined by the relation  

 ,0,)( )( ≥= txtx
tν

 

where the counting process )(tν  is defined by the formula:  

 .0},:max{:)( ≥≤= ttnt
n

τν  

We consider a semi-Markov process ,0),( ≥ttx  that is regular and uniformly 

ergodic with stationary distribution :),( Ε∈BBπ  

 ./)()()( mxmdxdx ρπ =  
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Here ,),( Ε∈BBρ  is a stationary distribution of the Markov chain attached. 

Diffusion process d
Rtu ∈)(

ε  in an averaging scheme with a small parameter 

0>ε  defined by stochastic differential equation 

 ( ) ),()();()( tdwtudt
t

xtuCtdu
εεε

σ

ε

+















=  (1) 

where: ,0),( ≥ttu
ε  - random evolution in a diffusion process (1) [6, 9, 15, 16];  

,0),( ≥ttx  - semi-Markov process [6, 8, 13, 14];  

)(tw  - Wiener process [3-5].  

Semigroup ,,0,0),( Xxstx
t

st
∈≥≥

+
C  accompanying systems  

 ( )( ) ( ) ,)0(),()();()( uutdwtudttxtuCtdu
xxxx
=+= σ  (2) 

defined by the relation  

 ,)()),(()()( utustuux
xx

t

st
=+=

+
ϕϕC  (3) 

where  

 ),(:)(),,(:)( ututuustustu
xxxx

=+=+ . (4) 

and (4) is semigroup property. 

Generating operator )(xC  semigroup )(xt

st+
C  is defined by form  

 ),()(
2

1
)();()()(

2
uuuxuCux ϕσϕϕ ′′+′=C  (5) 

where ).()(
22

RCu ∈ϕ  

3. Main result 

Theorem 1. Let regression function );( xuC  and variation )(uσ  satisfy the follow- 

ing conditions:  

C1: )();(
2 d
RCuC ∈⋅ , 

C2: )()(
2 d
RCu ∈σ , 

C3: the distribution functions ,,0),(1)(),( XxttGtGtG
xxx

∈≥−=  satisfy the Cramer 

condition uniformly in Xx∈ ,  

 .0,)(sup

0

>+∞<≤∫
∞

∈
hHdttGe x

ht

Xx   

Then the solution ,0),( ≥ttu
ε

 of the equation (1) converges weakly to the limit 

diffusion process ,0),( ≥ttζ  as ,0→ε  which is defined by the generator  
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),()(
2

1
)()()(

2
uuuuCu ϕσϕϕ ′′+′=L  

where  

 ).()(),();()(
4 d

X

RCudxxuCuC ∫ ∈= ϕπ  

4. Limit operator properties 

We introduce advanced Markov renewal process (MRP) [6], by given sequence:  

 ,),(),( nnnnnn xxuu εττττ εεεεεεε

===  (6) 

Where ,0,0,
0

1

=≥=∑
=

τθτ
n

k

nn n  means times of renewal in semi-Markov process 

,0),( ≥ttx  [6] determined by the distribution function of the time spent in the state x. 

Definition 1. [6, 17] Compensating operator advanced MRP (6) is defined by 

the form  

).(/)],,(},,),,({[),,()(
111

1
xgtxutxxuuxuEtxux

nnnnnnt
ϕττϕεϕ

εεεεεεε

−====
+++

−

L  (7) 

Lemma 1. Compensating operator (7) on test-functions ),( xuϕ  is defined by 

formula: 

 ,),(),(),()()()(),()(

0

1












−= ∫ ∫

∞

+

−

X

t

stxt
xuyudyxPxdsGxqxux ϕϕεϕ

ε

CL  (8) 

where  

 .)()(,
)(

1
)(

0

∫
∞

=== dttGExg
xg

xq
xx

θ  

Proof. Given point ε

1
u  we have [6, 16, 18]:  

 ).,(),()()(),()(),(

0

111
0

yudyxPxdsGxuxExuE

X

t

stx

t

t
x

ϕϕϕ ε

ε

θ

εε

∫∫ +

∞

+
== CC  

Here we have (8).  

Lemma 2. Compensating operator )(x
t

ε

L  is defined by form  

 [ ] ),,()(),(),()( 00,
11

xuIxxuxux
tt

ϕεϕεϕ
εε

QGQL −+=
−−  (9) 

where ).()()(

0

0, xdsGx
t

stxt ε

ε

+

∞

∫= CG   
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Proof. From (8) we have  

 [ ]

[ ] .),(),()()()(

),(),(),()(

),(),(),()()()(),()(
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Then we obtain (9).  

Lemma 3. Compensating operator )(x
t

ε

L  has the asymptotic representation  

 ),,()(),(),()(
1

1
xuxxuxux

t
ϕθϕεϕ εε

PQL +=
−  (10) 
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and  
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xt st
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.)(:)(
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∫
∞

=

s
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Proof. We have semigroup equation ,,0),( Xxtx
t

∈≥
+ st

C
ε

  

 .)()()( dsxxxd
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stst
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εε ++
=  

Integrating by parts we have:  
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Given the Cramer condition we have:  

 .)()()()()()()(

00

0, ∫∫
∞

+

∞

+
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t

stx

t

stxt εε
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εε CCCCG  

Hence we have (10). 

For  
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integrating by parts we have: 
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Thus we have  

 ).()()()( 2,1, xxIxmx
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εε
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Hence:  
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where  
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Lemma 4. Compensating operator )(x
t

ε
L  has the asymptotic representation in the 

function ),()(),(
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xuuxu ϕεϕϕ
ε
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Proof. We have  
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[ ] [ ]
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Lemma 5. The given singular perturbation problem [6, 15, 19], limit generator L 

is defined by formula:  

 ).()(
2

1
)()()(

2
uuuuCu ϕσϕϕ ′′+′=L  

Proof. From [6, 19] QNu ∈)(ϕ  we have  

 .0)( =uϕQ  

Using formula from lemma 3 we have:  

 ),()()(),(
1

uuxxu ϕϕϕ LCQ =+   

 ),()()())((),(
1

uxuxxu ϕϕϕ LLCQ =−=  

where  

 .xx LCL −= )()(  

Hence  

 ).()(),(
01

xxxu ϕϕ LR=  (12) 

Now using statement [6] we get lemma 5.  

5. Proof of theorem 

Use the following theorem  

Theorem. [6] (Pattern limit theorem) If the following conditions holds:  

(C1): The family of embedded Markov renewal process ,,,, 00 >≥ εξ εε

tx
tt

 is rela- 

tively compact. 

(C2): There exists a family of test functions ),( xu
ε

ϕ  in )( ERC
d
×

∞ , such that  

 ),(),(lim
0

uxu ϕϕ
ε

ε

=

→

 

uniformly on ., xu  

(C3): The following convergence holds  

 ),(),(lim
0

uxu ϕϕ
εε

ε

LL =

→
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uniformly on ., xu  The family of functions 0, >εϕ
εε

L  is uniformly bounded and 
εε

ϕL  and ϕL  belong to )( ERC
d
×

∞ . 

(C4): The convergence of the initial values holds, that is,  

 ,0,
00
→→ εξξ ε

P

 

and  

 .sup
00

+∞<≤
>

CE
ε

ε
ξ  

Then the weak convergence ,0, →⇒ εξξ ε

tt
 takes place. The limit process 

,0, ≥t
t
ξ  with generator L  and is characterized by the martingale:  

 ( ) ( ) .0, ≥−= ∫ tds
stt

ξϕξϕµ

t

0

L  

Proof of theorem 1. 

Performance conditions (C1) arise from [17]. Performance conditions (C2) arise 

from ),()(),(
1

xuuxu εϕϕϕ
ε

+=  and (12). Performance conditions (C3) arise 

from lemma 3 and lemma 5. It must show boundaries of )()( ux ϕθ ε . Consider 

),()(
11

xux ϕθ ε .  

 ).()(),()(
011

uxxux ϕϕθ ε

LPR=  

With bounded operators 0
RP,  [3, 5] and sleekness by function )(uϕ  followed 

the limited ),()(
11

xux ϕθ ε . This gives us bound of )()(
2

ux ϕθ ε . 

Performance conditions (C4) arise from [15].  

Thus we get the assertion of Theorem 1. 

Corollary 1. The diffusion process ,0),( ≥ttζ  is the solution of the stochastic 

differential equation:  

 ).())(())(()( tdwttCtd ζσζζ +=  

The same result can be obtained for the similar process:  

Theorem 2. Let regression function ),( xuC  and variation ),( xuσ  satisfy the follow- 

ing conditions:  

C1: )(),(
2 d
RCuC ∈⋅ , 

C2: )(),(
2 d
RCu ∈⋅σ , 

C3: the distribution functions ,,0),(1)(),( XxttGtGtG
xxx

∈≥−=  satisfy the Cramer 

condition uniformly in Xx∈ , 

 .0,)(sup

0

>+∞<≤∫
∞

∈
hHdttGe x

ht

Xx  
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Then the solution ,0),( ≥ttu
ε

 of the equation  

 ),();();()( tdw
t

xtudt
t

xtuCtdu 
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=

ε

σ

ε

εεε  

converges weakly to the limit diffusion process ,0),( ≥ttζ  as ,0→ε  which is 

defined by the generator  

 ),()(
2

1
)()()(

2
uuuuCu ϕσϕϕ ′′+′=L  

where  

 ).;();(:);(),();()(
222

xuxuxudxxuu

X

σσσπσσ
∗

∫ ==  

6. Conclusions  

Sufficient conditions were obtained for the convergence of the diffusion process 

with semi-Markov switching to the classical diffusion process. Two cases were 

considered here: when the variance is independent of the semi-Markov switching 

process and when the variance depends on this process. In order to obtain results, 

the distribution properties are crucial, especially Cramer’s condition. Limit process 

is an asymptotic approximation of the initial process in the sense of a probabilistic 

approach. The converge conditions are simple and their determination can be im-

plemented in a computer program. This result can be used in the Poisson Approxi-

mation scheme [21-23] for the diffusion process with semi-Markov switching. 

References 

[1] Blankenship, G.L., & Papanicolaou, G.C. (1978). Stability and control of stochastic systems 

with wide band noise disturbances. SIAM. Appl. Math, 34, 437-476. 

[2] Kushner, H.J. (1978). Optimality conditions for the average cost per unit time problem with 
a diffusion model. Siam J. Control and Optimization, 16, 2, 330-346. 

[3] Skorokhod, A.V. (1989). Asymptotic Methods in the Theory of Stochastic Differen- tial Equa-

tions. AMS, 78, Providence. 

[4] Stroock, D.W., & Varadhan, S.R.S. (1979). Multidimensional Diffusion Processes. Berlin: Springer- 

Verlag. 

[5] Korolyuk, V.S. (1998). Stability of stochastic systems in the diffusion approximation scheme. 

Ukrainian Mathematical Journal, 50, 40-54. 

[6] Korolyuk, V.S., & Limnios, N. (2005). Stochastic Systems in Merging Phase Space. Singapore: 

World Scientific. 

[7] Korolyuk, V.S. (2010). Problem of large deviations for Markov random evolutions with inde-

pendent increments in the scheme of asymptotically small. Ukrainian Mathematical Journal, 62, 

739-747.  



Y. Chabanyuk, W. Rosa 14 

[8] Anisimov, V.V. (1978). Limit theorems for switching processes and their applications. Cyber-

netics, 14(6), 917-929.  

[9] Anisimov, V.V. (1988). Limit theorems for switching processes. Theory Probab. and Math. Sta-

tist., 37, 1-5.  

[10] Anisimov, V.V. (1995). Switching processes: Averaging principle, diffusion approximation and 
applications. Acta Applicandae Mathematicae, 40, 95-141.  

[11] Anisimov, V.V. (1999). Averaging methods for transient regimes in overloading retrial queuing 
systems. Mathematical and Computing Modelling, 30(3/4), 65-78.  

[12] Anisimov, V.V. (2008). Switching Processes in Queueing Models. London: Wiley, Sons, ISTE.  

[13] Korolyuk, V.S., & Swishchuk, A.V. (1994). Random Evolutions. Dordrecht: Kluwer Acad. Publ. 

[14] Korolyuk, V.S., & Korolyuk, V.V. (1999). Stochastic Models of Systems. Dordrecht: Kluwer.  

[15] Korolyuk, V.S., Korolyuk, V.V., & Limnios, N. (2009). Queueing systems with semi-Markov 

flow in average and diffusion approximation schemes. Methodol. Comput. Appl. Probab., 11, 

201-209.  

[16] Sviridenko, M.N. (1986). Martingale approach to limit theorems for semi-Markov processes. 

Theor. Probab. Appl., 540-545.  

[17] Chabanyuk, Ya.M. (2007). Stability of a dynamical system with semi-Markov switchings under 

conditions of diffusion approximation. Ukrainian Mathematical Journal, 59, 1441-1452.  

[18] Korolyuk, V.S., & Chabanyuk, Ya.M. (2002). Stability of a dynamical system with semi-Markov 

switchings under conditions of stability of the averaged system. Ukrainian Mathematical 

Journal, 54, 239-252.  

[19] Chabanyuk, Ya.M. (2007). Continuous stochastic approximation with semi-Markov switchings 

in the diffusion approximation scheme. Cybernetics and Systems Analysis, 43, 605-612.  

[20] Chabanyuk, Ya.M. (2007). Convergence of a jump procedure in a semi-Markov environment 

in diffusion-approximation scheme. Cybernetics and Systems Analysis, 43, 866-875.  

[21] Korolyuk, V.S., Limnios, N., & Samoilenko, I.V. (2011). Poisson aproximation of recurent 

process with semi-Markov switching. Stochastic Analisys and Applications, 29, 769-778.  

[22] Korolyuk, V.S., Limnios, N., & Samoilenko, I.V. (2010). Poisson aproximation of recurent 

process with locally independent increments and semi-Markov switching - toward application 

in reliability. Advances in Degradation Modeling, January, 105-116.  

[23] Samoilenko, I.V., Chabanyuk, Y.M., Nikitin, A.V., & Khimka, U.T. (2017). Differential equa-

tions with small stochastic additions under poisson approximation conditions. Cybernetics 

and Systems Analysis, 53, 3, 410-416.  


