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Abstract. A useful tool for modelling behaviour in theoretical computer science is the con-

cept of coalgebras. Coalgebras enable  one to model execution of programs step by step  

using categorical structures and polynomial endofunctors. In our paper, we start with 

a short introduction of basic notions and we use this method for modelling structural opera-

tional semantics of a simple imperative language.  
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1. Introduction 

The development of computers has contributed to the investigation of dynam-

ical features in formal structures. The dynamics involve a state of affairs which can 

be possibly observed and modified [1]. We can consider a computer state as 

a combined content of all memory cells. A user can observe only a part of this 

state, e.g. on display and he can modify this state by typing and executing com-

mands. As a reaction, the computer displays certain behaviour [2]. The aim of pro-

gramming is to force the computer to execute some actions and to generate desired 

behaviour. This behaviour can be positive, e.g. expected behaviour; or negative, 

e.g. side effects that must be excluded from the system. To describe the behaviour 

of a computer system is a non-trivial matter. But some formal descriptions of such 

complex systems are needed when we wish to reason formally about their behav-

iour. This reasoning is needed to achieve the correctness or security of these sys-

tems [3]. 

The basic idea of behavioural theory is to determine a relation between internal 

states and their observable properties. The internal states are often hidden. Com-

puter scientists have introduced many formal structures to capture the state-based 
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dynamics, e.g. automata, transition systems, Petri nets, etc. In [4] the notion of  

behaviour in algebraic specifications  was firstly introduced.  

Coalgebras are a very important part of theoretical computer science. Their 

main rôle is in modelling the generated behaviour of running programs [5]. This is 

the behaviour that can be observed on the outside of a machine, for instance on the 

screen. Coalgebra is a study of states and their operations and properties. The set of 

states is usually seen as a black box, to which we have limited access [6]. A rela-

tion between what is actually inside and what can be observed externally is the 

foundation of the theory of coalgebras [7]. 

In this paper we introduce basic concepts and constructions of coalgebras. We 

start with the notion of signature, category of states and construction of a polyno-

mial endofunctor, which is determined by a corresponding signature. Then we  

introduce the notion of coalgebra and illustrate it on a simple example of a bank  

account. The main part of our paper consists of the coalgebraic definition of struc-

tural operational semantics of a simple imperative language together with an  

example how the semantics of a program can be modelled by coalgebra. 

2. Basic notions  

Program execution can be considered as a mapping from input values to output 

ones. Giving some input values, the execution causes changes of internal state, i.e. 

computer memory, and we can observe the behaviour of a program only by its out-

put values.  There are also programs changing the internal state of a computer, that 

do not produce outputs, e.g. the programs running infinitely, sleeping processes in 

operating systems which wake up and work only in the case when some event  

occurs. An observer cannot see any changes of internal states because they are hid-

den [8]. Therefore, it is important to model the behaviour of programs before their 

implementation, and one of the appropriate methods is to use special categorical 

structures called coalgebras. 

The starting notion in the coalgebraic approach is a signature used in the theory 

of algebraic specifications [9]. A signature Σ consists of types, e.g. �, �, …  and  

operation symbols of the form �:��, … ,�� → �. In a signature we distinguish: 
•  constructor operation symbols defined inductively. They tell us how to generate 

(algebraic) data elements; 

•  destructor  operation symbols, also called observers or transition functions de-

fined coinductively. They tell us what we can observe about our data elements; 

•  derived operations that can be defined inductively or coinductively. 

If we define a derived operation � inductively, we can define the value of f on 
all constructors. In a coinductive definition of derived operation f we can define the 

values of all destructors on each outcome �(�) [10, 11].  
The next step is to define a basic category as a state space. A category  � = (���� ,�����) is  a mathematical structure consisting of a class of objects,  
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e.g. �,�, … and a class of morphisms of the form �:� → � between them  

[12, 13]. Every object has its identity morphism �		: � → � and morphisms are 

composable. Because the objects of a category can be arbitrary structures, catego-

ries are useful in computer science, where we often use more complex data struc-

tures not expressible by sets. In the coalgebraic approach, the objects are states and 

morphisms are the operations that change states, obviously destructor operations 

from the corresponding signature.  

The basic category of states for a coalgebra has to satisfy several properties. 

First, this category has to have terminal object 1 to indicate abnormal ending of  

execution. Second, it needs to have finite products, coproducts and exponentials 

[14] for constructing polynomial endofunctors introduced below. Third, to model 

the infinite execution of a program, it needs to have a colimit for any cocone con-

sisting of an infinite sequence of states, i.e. for infinite composition of morphisms 

[15].  

Execution of a program is modelled by a polynomial endofunctor. In the follow-

ing text we introduce this concept. A functor 
:� → � from a category � to a cat-
egory � is a morphism defined as a pair of functions: 

 

:���� → ����    and    
�:����� → ����� 

which are functorial, i.e. they preserve identities and composition. For a morphism  �: � → � in � its  image is a morphism in �:  
 

 
���:

�� → 

��. (1) 
 

A special functor is endofunctor 
:	� → � over a category �. In the coalgebraic 

approach, polynomial endofunctors are widely used. They are constructed by using 

constants, identities, products, coproducts and exponentials over a state space [16]. 

A polynomial endofunctor  is determined by the corresponding signature, especial-

ly by its destructor operations [17]. The syntax of a polynomial endofunctor 	
 can 
be described by the following inference rule: 
 

 
�� ∷= �|� × �|� + �|��, (2) 
 

where � stands for a state space and � is a set of constants. The product � × �  
expresses a change of state from X together with some observable input or output 

value from Y. The coproduct � + � expresses either a change of state or some ob-

servable value, possibly an undefined end of execution [18]. For instance, when an 

execution of a program can crash, we define this possibility by polynomial 

endofunctor 
�� = 1 + �. Exponential objects express functions from � to �. In 
summary, a polynomial endofunctor models the steps of execution and it captures 

the kind of behaviour that can be observed. 

We use the category ��� of sets as a basic category for coalgebras. This catego-
ry has sets as objects and functions as morphisms. Therefore, we introduce the 
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concept of polynomial endofunctors for this category. Polynomial endofunctors 

must be defined for objects and also for morphisms. 

Consider the category ���  and its objects � and �. The product � × � is de-
fined by 

 � × � = {(�,�)|� ∈ �,� ∈ �}. (3) 
 

The product operation which assigns its cartesian product to a pair of objects 

can be also applied for morphisms. Let �: � → �′ and �:� → �′ be morphisms, 

then we can define a function  � × �: � × � → �� × �′ by 
 

 �� × ���,� = (���,���). (4) 
 

The coproduct operation � + � is defined by 
 

  � + � = ��0,�|� ∈ �� ∪ ��1,�|� ∈ ��. (5) 
   

The first members of pairs, 0 and 1 serve to force the union to be disjoint.  The 
coproduct can also be applied for morphisms, e.g. for �:� → �′ and �: � → �′  we 
can define the coproduct of morphisms � + �:� + � → �� + �′ such that for � ∈ � + � 
 �� + ��� = ��0,����, if	� = �0,�;�1,����, if	� = �1,�.

 (6) 

Now we have defined polynomial endofunctors for objects and morphisms in 

the category ��� and we can introduce the concept of coalgebras. 
Let 
 be a polynomial endofunctor determined by its corresponding signature. 

An F-coalgebra, also called coalgebra of type 
 is a pair 
 

 (�, �) (7) 
 

where X stands for a state space and � is a structure map 
 

  �: � → 
(�) (8) 
 

where � is a finite tuple of destructors 
 

 � = �	� !"#�!$"�, … ,	� !"#�!$"�. (9) 
 

The structure map acts as a destructor, it decomposes elements into their con-

stituent parts. Depending of the definition of 
, it provides the next state possibly 
with observable values.  In other words, a coalgebra investigates states, operations 

on them. It uses destructor operations returning elements of data structures. The  

essence of the coalgebraic behavioural theory is the tension between what is actual-

ly inside and what can be observed externally [19].  
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At the end of this section, we show a simple example of how bank account can 

be modelled by coalgebra. 

Example 1. Assume a program of bank account with the following fragment of 

signature: 

Σ���	������� !%&� : '!�!�,(�)#�$&* : …��)�*��:	'!�!� → (�)#�	�&$ �!: '!�!�,(�)#� → '!�!�
 

 

We present only destructor operation symbols of a bank account that are im-

portant for constructing coalgebra. We assign the following representations to 

types and operations: 

- the  type 	(�)#�  we represent as the set of real numbers ℝ; 

- the type '!�!�  we represent as a set � of lists of values in the form 
 

 〈�,%, … , �〉, (10) 
 

where �,%, � ∈ ℝ	. Double colon denotes the operation append which extends a list 
by appending element at the end, e.g. a state 〈�,%, �〉 is obtained by an operation 〈�,%〉 ∷ �. 

To the operation ��)�*�� we assign the function 
 

 ��): � → ℝ (11) 
 

that for a state � ∈ � returns the actual balance attribute of this state, i.e. a sum of 

all values on an account; and to the operation 	�&$ �! we assign the following 
function 

 

 	�&:� × ℝ → �, (12) 
 

that for a state x and input value r returns a new state – it appends the new amount 

at the end of list.  

The basic category -../01� consists of states � ∈ � as objects and destructors ��) and 	�& as morphisms. Each state is a finite list of real numbers representing 

the history of an account. 

Now we construct polynomial endofunctor  
:-../01� → -../01� using 
currying on 	�& as  

 

 
�� = �ℝ × ℝ. (13) 

   

The structure map of coalgebra is a tuple of destructors � = (	�&,��)): 
 

 �: � → �ℝ × ℝ. (14) 
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A bank account with these functions is an F-coalgebra  
 

(�, �). 
It holds 
 

 
(2� ∘ �)(�) = ��)(�)�2� ∘ ����" = 	�&��, ",

 (15) 

 

where the maps 2� and 2� stand for obvious projections defined to a product. 

This coalgebra models a correct bank account which records in the state the  

history of all deposited sums and returns the total balance on the account when the 

function ��) is applied. 
Let the state space � be the set of finite strings over reals and let the symbol '#3(�) denote the sum of all reals in �. Then the functions in coalgebra are de-

fined as follows: 
 

 
��)�� = '#3��,	�&��, " = � ∷ ",

 (16) 

 

where a double colon denotes the operation append which appends an object " at 
the end of the list �. 

∎ 

3. Structural operational semantics as coalgebra 

Structural operational semantics is a very popular semantic method and it is also 

called small-steps semantics. It describes a meaning of a program in elementary 

steps which can be considered as transitions between memory states [20]. A state is 

considered as an abstraction of memory. and each change of some value stored in 

memory is considered as a change of state. This change of state is described by 

a transition relation [21, 22]. 

It is useful to use the concepts of the category theory for modelling structural 

operational semantics. Categories provide a powerful tool for expressing and mod-

elling the program execution. If we consider memory states as category objects, 

then execution steps (states’ changes) are morphisms between states.  

3.1. Simple imperative language Jane 

For our aims, we define a simple language Jane which consists of all traditional 

van Dijkstra’s constructs (D-Charts) for imperative languages and we formulate 

principles of structural operational semantics in a category. The category serves 

here as an abstract model of computer memory with possible states, i.e. it can be 

considered as a state space. Our approach can also be extended for blocks, declara-
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tions and user input but here we concerned only with basic imperative features of 

language. 

 

We introduce for Jane the following well-known syntactic domains: 
 * ∈ 456   digit strings � ∈ 789   variables’ names � ∈ :;<=9   arithmetic expressions � ∈ >;<=9   Boolean expressions ' ∈ ?@8@6  statements 
 

The Jane language contains the following statements: assignment, empty statement 

(considered also as an empty sequence of statements), sequences of statements, 

conditional statement and prefix logical cycle statement: 
 ' ∷= � ≔ �	|	skip	|	'; '	|	if	�	then	'	else	'	|	while	�	do	' 
 

Semantics of arithmetic and Boolean expressions are formulated in [23]. 

Each variable in a program is stored in computer memory. A variable is consid-

ered as a container for some value. In our language we consider only implicit types 

of variables - integer numbers. Here the transient data are Boolean values, but they 

are never stored as stable values in memory. 

We assume that each variable occurring in a program is implicitly allocated and 

we do not consider the variables’ declarations. A value of allocated variable can be 

assigned and modified inducing a change of state. 

3.2. Signature for states and their representation 

States we define as an abstract data type. Its signature consists of types and  

operation symbols on the type '!�!�: 
 

Σ������ !%&� : '!�!�,(�",(�)#�, '!�!3$&* : �*�!: → '!�!���!: (�", '!�!� → (�)#�*��!: '!�!3, '!�!� → '!�!�
 

 

The operation symbols have the following intuitive meaning: �*�! creates the initial 
state of a program and ��! returns a variable value in a given state. 

Now we assign the representation to the signature Σ�����. We assign to the type (�)#� the set of integers together with the undefined value ⊥: 
 

 78A5; = ℤ ∪ �⊥�. (17) 
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The type (�" is represented by a countable set of variables’ names 789. The type '!�!� is represented by a set of states ?@8@;. Every particular state  ∈ ?@8@; is de-

fined as a function 

  : 789	 → 78A5;. 
 

(18) 

Each state expresses one moment of program execution, roughly speaking a snap-

shot. Then any state   is expressed as a sequence 
 

  = 〈���,B�, … , ��� ,B�〉 (19) 
 

of ordered tuples ��� ,B� where �� is the name of variable with its actual value B� . 
The first two operations in signature we define as follows. The operation C�*�!D	creates the initial state  
 of a program with no variable defined by 
 

  
 = C�*�!D = 〈�E, E〉, (20) 
 

where E represents an empty position and an empty value. The operation C��!D re-
turns the value of a selected variable and is defined as follows: 

 

 C��!D��� ,   = FB� , if	��� ,B� ∈  ;
⊥, otherwise.

 (21) 

 

Such defined states we consider as category objects in our model. We also consider 

a special state expressing the undefined state 
 

  � = 〈�⊥, ⊥〉. (22) 

3.3. Operational semantics of Jane and category of states 

In this section we sketch how to construct a categorical model based on struc-

tural operational semantics. The most important feature of this semantic method is 

the detailed description of a program execution in small steps. 

We construct a model of structural operational semantics as a transition system, 

which models program behaviour on a state space [24]. The execution of a state-

ment is defined by inference rules which are listed in [24, 25]. 

A step of execution with a  possible change of state is in structural operational 

semantics expressed as a transition 〈',  〉 ⇒  �. This transition is a relation between 
an input state   and an output state  �. Any change of state is done as one-step ac-
tion [23]. On the other hand, if a statement ' is not executed in one step, then the 
transition is expressed as follows: 

 

 〈',  〉 ⇒ 〈'�,  ′〉. (23) 
 

where '� is a sub-statement of ' that still should be executed. In both cases the 
transition rules express one action during the program execution. 
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A categorical model, the category ��G��H	 we construct as follows. We consider: 

• category objects as states from ?@8@;, and 
• category morphisms as transitions. 

The change of state we define by the following function *��! from signature: 

 

 *��!: ?@8@6 → �?@8@; → ?@8@;. (24) 

   

For a statement ' the function *��!C'D: ?@8@; → ?@8@; is defined as follows: 
 *��!C'D�  = 
 

=

IJ
JJ
K
JJ
JL
 � =  M� ⟼ C�D N if	' = � ≔ �; if	' = skip	or	' = while	�	do	'	and	C�D = Q8AR;;*��!C'�� ;'�D� ′ if	' = '�;'�	and	〈'�;'�,  〉 ⇒ 〈'��; '�,  ′〉;*��!C'�D� ′ if	' = '�;'�	and	〈'�;'�,  〉 ⇒ 〈'�,  ′〉;*��!C'�D�  if	' = if	�	then	'�	else	'�	and	C�D = @95;;*��!C'�D�  if	' = if	�	then	'�	else	'�	and	C�D = Q8AR;;*��!C';while	�	do	'D( ) if	' = while	�	do	'	and	C�D = @95;;	��$"!( ) otherwise.

 

 

So any morphism in the category of states can be considered as a function *��!C'D.	 A morphism ��$"! is a unique morphism which sends any state to the 

undefined state  �: 
 

 ��$"!:  ⇢  � (25) 
   

and it represents the situation when an error occurs during the program execution 

and the program cannot continue its execution. Because from any object in a cate-

gory, there exists only one morphism into the undefined state, it is an object which 

has a property of terminal object 1 in the category. 

3.4. Coalgebra for Jane as a transition system 

An F-coalgebra, also called coalgebra of type F or F-system, is a pair (�, �) 
where � is a state space of the coalgebra and � is the structure map of the coalgebra 

on � (8): 
 �:� → 
��. 
 

This structure map acts as a destructor operation. It takes an element of the  

F-coalgebra and decomposes the elements into their constituent parts. This is  

a common feature of coalgebras, and this point of view is dual to the point of view 

that algebras are objects together with combinatory principles [26-28]. 
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An endofunctor on the category of states 
 

 
: ��G��H → ��G��H (26) 

for coalgebra is of the type 
�� = 1 + � where 1 stands for a singleton of an un-
defined value and � is a placeholder for a state space. 

In our case, a state space is the set of category objects ��G��H��� = ?@8@; and 

{ ⊥} = 1 is a singleton set containing only an undefined state. The endofunctor 
 
on the category of states is defined as follows: 

 

 
�?@8@;	 = 1 + ?@8@;. (27) 
   

This endofunctor sends objects  ∈	?@8@; to objects: 
 

 
�  =  � + *��!C'D , (28) 
 

and morphisms to morphisms: 
 

 
�*��!C'D = ��$"! + *��!C'D. (29) 
 

Applying the functor 
 on statements in program, we get steps of its execution. 
 

Example 2. We show a simple example of defining structural operational  

semantics of a program written in Jane. 

We consider the simple program with input values � and % that would be sorted  
according the descending order. Namely if � ≤ %, � and % should switch their  
values. 

We show the solution for both possible cases, when the Boolean expression in the 

conditional statement evaluates to @95; and then to Q8AR;. 
Let the program contains only one statement ': 
 ' = if	(� ≤ %)	then	(� ≔ �; � ≔ %; % ≔ �)	else		skip	 
 

and let the input states be: 

a)  
 = [� ↦ S,% ↦ TU, � ↦ U]; and 
b)  
� = [� ↦ TU,% ↦ V, � ↦ U]. 
 

In the case a) when the condition evaluates to @95;, 
 

 C� ≤ %D� 
 = @95;, (30) 
 

 we have the following sequence of states: 
 

 


� 
 = 1 + *��!C'D� 
 = *��!C� ≔ �; � ≔ %; % ≔ �D� 
 =

= *��!C� ≔ %;% ≔ �D� � =

= *��!C% ≔ �D� � =

=  �
 (31) 

The sequence of states during the program execution is depicted in Figure 1. 
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Fig.  1. States during the program execution - case a 

In the case b) the condition evaluates to Q8AR;, 
 

 C� ≤ %D� 
�  = Q8AR;, (32) 

 
the execution of program is evaluated as follows: 

 

 *��!C'D� 
�  = *��!Cskip	D� 
�  =  
� , (33) 

   

so the initial state is unchanged (Fig. 2). 

 

 

Fig. 2. An unchanged state - case b 

In our program, the variables � and % store the observable values. The variable � is 
an auxiliary variable and it is not observable for a program user. 

∎ 

4. Conclusion 

In this short contribution, we presented the main ideas of the coalgebraic  

approach of the behavioural theory and the process of defining coalgebra for  

observing the behaviour of programs and program systems. The main part of our 

paper is the coalgebra for the Jane simple imperative language, constructed as tran-

sition system in the sense of structural operational semantics. Such modelled  

semantics are easy to comprehend and it gives illustrative information about execu-

tion steps for programs. 

We would like to extend this approach for language with declarations,  

input/output statements and procedures.  

Our next goal is to investigate bisimilarity, the relation between states that look 

to be the same and to formulate coinductive proofs of behaviour. 
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