
Journal of Applied Mathematics and Computational Mechanics 2017, 16(2), 145-157

www.amcm.pcz.pl p-ISSN 2299-9965

 DOI: 10.17512/jamcm.2017.2.12 e-ISSN 2353-0588

COALGEBRAS FOR MODELLING OBSERVABLE BEHAVIOUR

OF PROGRAMS

William Steingartner, Valerie Novitzká

Faculty of Electrical Engineering and Informatics, Technical University of Košice
 Slovakia

e-mail: william.steingartner@tuke.sk, valerie.novitzka@tuke.sk

Received: 31 March 2017; accepted: 15 May 2017

Abstract. A useful tool for modelling behaviour in theoretical computer science is the con-

cept of coalgebras. Coalgebras enable one to model execution of programs step by step

using categorical structures and polynomial endofunctors. In our paper, we start with

a short introduction of basic notions and we use this method for modelling structural opera-

tional semantics of a simple imperative language.

MSC 2010: 16T15, 18A22, 18C50

Keywords: category, coalgebra, observable behaviour, polynomial endofunctor, semantics

1. Introduction

The development of computers has contributed to the investigation of dynam-

ical features in formal structures. The dynamics involve a state of affairs which can

be possibly observed and modified [1]. We can consider a computer state as

a combined content of all memory cells. A user can observe only a part of this

state, e.g. on display and he can modify this state by typing and executing com-

mands. As a reaction, the computer displays certain behaviour [2]. The aim of pro-

gramming is to force the computer to execute some actions and to generate desired

behaviour. This behaviour can be positive, e.g. expected behaviour; or negative,

e.g. side effects that must be excluded from the system. To describe the behaviour

of a computer system is a non-trivial matter. But some formal descriptions of such

complex systems are needed when we wish to reason formally about their behav-

iour. This reasoning is needed to achieve the correctness or security of these sys-

tems [3].

The basic idea of behavioural theory is to determine a relation between internal

states and their observable properties. The internal states are often hidden. Com-

puter scientists have introduced many formal structures to capture the state-based

W. Steingartner, V. Novitzká 146

dynamics, e.g. automata, transition systems, Petri nets, etc. In [4] the notion of

behaviour in algebraic specifications was firstly introduced.

Coalgebras are a very important part of theoretical computer science. Their

main rôle is in modelling the generated behaviour of running programs [5]. This is

the behaviour that can be observed on the outside of a machine, for instance on the

screen. Coalgebra is a study of states and their operations and properties. The set of

states is usually seen as a black box, to which we have limited access [6]. A rela-

tion between what is actually inside and what can be observed externally is the

foundation of the theory of coalgebras [7].

In this paper we introduce basic concepts and constructions of coalgebras. We

start with the notion of signature, category of states and construction of a polyno-

mial endofunctor, which is determined by a corresponding signature. Then we

introduce the notion of coalgebra and illustrate it on a simple example of a bank

account. The main part of our paper consists of the coalgebraic definition of struc-

tural operational semantics of a simple imperative language together with an

example how the semantics of a program can be modelled by coalgebra.

2. Basic notions

Program execution can be considered as a mapping from input values to output

ones. Giving some input values, the execution causes changes of internal state, i.e.

computer memory, and we can observe the behaviour of a program only by its out-

put values. There are also programs changing the internal state of a computer, that

do not produce outputs, e.g. the programs running infinitely, sleeping processes in

operating systems which wake up and work only in the case when some event

occurs. An observer cannot see any changes of internal states because they are hid-

den [8]. Therefore, it is important to model the behaviour of programs before their

implementation, and one of the appropriate methods is to use special categorical

structures called coalgebras.

The starting notion in the coalgebraic approach is a signature used in the theory

of algebraic specifications [9]. A signature Σ consists of types, e.g. �, �, … and

operation symbols of the form �:��, … ,�� → �. In a signature we distinguish:
• constructor operation symbols defined inductively. They tell us how to generate

(algebraic) data elements;

• destructor operation symbols, also called observers or transition functions de-

fined coinductively. They tell us what we can observe about our data elements;

• derived operations that can be defined inductively or coinductively.

If we define a derived operation � inductively, we can define the value of f on
all constructors. In a coinductive definition of derived operation f we can define the

values of all destructors on each outcome �(�) [10, 11].
The next step is to define a basic category as a state space. A category � = (���� ,�����) is a mathematical structure consisting of a class of objects,

Coalgebras for modelling observable behaviour of programs 147

e.g. �,�, … and a class of morphisms of the form �:� → � between them
[12, 13]. Every object has its identity morphism �		: � → � and morphisms are
composable. Because the objects of a category can be arbitrary structures, catego-

ries are useful in computer science, where we often use more complex data struc-

tures not expressible by sets. In the coalgebraic approach, the objects are states and

morphisms are the operations that change states, obviously destructor operations

from the corresponding signature.

The basic category of states for a coalgebra has to satisfy several properties.

First, this category has to have terminal object 1 to indicate abnormal ending of
execution. Second, it needs to have finite products, coproducts and exponentials

[14] for constructing polynomial endofunctors introduced below. Third, to model

the infinite execution of a program, it needs to have a colimit for any cocone con-

sisting of an infinite sequence of states, i.e. for infinite composition of morphisms

[15].

Execution of a program is modelled by a polynomial endofunctor. In the follow-

ing text we introduce this concept. A functor
:� → � from a category � to a cat-
egory � is a morphism defined as a pair of functions:

:���� → ���� and
�:����� → �����

which are functorial, i.e. they preserve identities and composition. For a morphism �: � → � in � its image is a morphism in �:

���
:

��
 →

��
. (1)

A special functor is endofunctor
:	� → � over a category �. In the coalgebraic
approach, polynomial endofunctors are widely used. They are constructed by using

constants, identities, products, coproducts and exponentials over a state space [16].

A polynomial endofunctor is determined by the corresponding signature, especial-

ly by its destructor operations [17]. The syntax of a polynomial endofunctor 	
 can
be described by the following inference rule:

��
 ∷= �|� × �|� + �|��, (2)

where � stands for a state space and � is a set of constants. The product � × �
expresses a change of state from X together with some observable input or output

value from Y. The coproduct � + � expresses either a change of state or some ob-
servable value, possibly an undefined end of execution [18]. For instance, when an

execution of a program can crash, we define this possibility by polynomial

endofunctor
��
 = 1 + �. Exponential objects express functions from � to �. In
summary, a polynomial endofunctor models the steps of execution and it captures

the kind of behaviour that can be observed.

We use the category ��� of sets as a basic category for coalgebras. This catego-
ry has sets as objects and functions as morphisms. Therefore, we introduce the

W. Steingartner, V. Novitzká 148

concept of polynomial endofunctors for this category. Polynomial endofunctors

must be defined for objects and also for morphisms.

Consider the category ��� and its objects � and �. The product � × � is de-
fined by

 � × � = {(�,�)|� ∈ �,� ∈ �}. (3)

The product operation which assigns its cartesian product to a pair of objects

can be also applied for morphisms. Let �: � → �′ and �:� → �′ be morphisms,

then we can define a function � × �: � × � → �� × �′ by

 �� × �
��,�
 = (���
,���
). (4)

The coproduct operation � + � is defined by

 � + � = ��0,�
|� ∈ �� ∪ ��1,�
|� ∈ ��. (5)

The first members of pairs, 0 and 1 serve to force the union to be disjoint. The
coproduct can also be applied for morphisms, e.g. for �:� → �′ and �: � → �′ we
can define the coproduct of morphisms � + �:� + � → �� + �′ such that for � ∈ � + �
 �� + �
��
 = ��0,���
�, if	� = �0,�
;�1,���
�, if	� = �1,�
.

 (6)

Now we have defined polynomial endofunctors for objects and morphisms in

the category ��� and we can introduce the concept of coalgebras.
Let
 be a polynomial endofunctor determined by its corresponding signature.

An F-coalgebra, also called coalgebra of type
 is a pair

 (�, �) (7)

where X stands for a state space and � is a structure map

 �: � →
(�) (8)

where � is a finite tuple of destructors

 � = �	� !"#�!$"�, … ,	� !"#�!$"�
. (9)

The structure map acts as a destructor, it decomposes elements into their con-

stituent parts. Depending of the definition of
, it provides the next state possibly
with observable values. In other words, a coalgebra investigates states, operations

on them. It uses destructor operations returning elements of data structures. The

essence of the coalgebraic behavioural theory is the tension between what is actual-

ly inside and what can be observed externally [19].

Coalgebras for modelling observable behaviour of programs 149

At the end of this section, we show a simple example of how bank account can

be modelled by coalgebra.

Example 1. Assume a program of bank account with the following fragment of

signature:

Σ
���	������� !%&� : '!�!�,(�)#�$&* : …��)�*��:	'!�!� → (�)#�	�&$ �!: '!�!�,(�)#� → '!�!�

We present only destructor operation symbols of a bank account that are im-

portant for constructing coalgebra. We assign the following representations to

types and operations:

- the type 	(�)#� we represent as the set of real numbers ℝ;

- the type '!�!� we represent as a set � of lists of values in the form

 〈�,%, … , �〉, (10)

where �,%, � ∈ ℝ	. Double colon denotes the operation append which extends a list
by appending element at the end, e.g. a state 〈�,%, �〉 is obtained by an operation 〈�,%〉 ∷ �.

To the operation ��)�*�� we assign the function

 ��): � → ℝ (11)

that for a state � ∈ � returns the actual balance attribute of this state, i.e. a sum of
all values on an account; and to the operation 	�&$ �! we assign the following
function

 	�&:� × ℝ → �, (12)

that for a state x and input value r returns a new state – it appends the new amount

at the end of list.

The basic category -../01� consists of states � ∈ � as objects and destructors ��) and 	�& as morphisms. Each state is a finite list of real numbers representing
the history of an account.

Now we construct polynomial endofunctor
:-../01� → -../01� using
currying on 	�& as

��
 = �ℝ × ℝ. (13)

The structure map of coalgebra is a tuple of destructors � = (�&,��)):

 �: � → �ℝ × ℝ. (14)

W. Steingartner, V. Novitzká 150

A bank account with these functions is an F-coalgebra

(�, �).
It holds

(2� ∘ �)(�) = ��)(�)�2� ∘ �
��
�"
 = 	�&��, "
,

 (15)

where the maps 2� and 2� stand for obvious projections defined to a product.

This coalgebra models a correct bank account which records in the state the

history of all deposited sums and returns the total balance on the account when the

function ��) is applied.
Let the state space � be the set of finite strings over reals and let the symbol '#3(�) denote the sum of all reals in �. Then the functions in coalgebra are de-

fined as follows:

��)��
 = '#3��
,	�&��, "
 = � ∷ ",

 (16)

where a double colon denotes the operation append which appends an object " at
the end of the list �.

∎

3. Structural operational semantics as coalgebra

Structural operational semantics is a very popular semantic method and it is also

called small-steps semantics. It describes a meaning of a program in elementary

steps which can be considered as transitions between memory states [20]. A state is

considered as an abstraction of memory. and each change of some value stored in

memory is considered as a change of state. This change of state is described by

a transition relation [21, 22].

It is useful to use the concepts of the category theory for modelling structural

operational semantics. Categories provide a powerful tool for expressing and mod-

elling the program execution. If we consider memory states as category objects,

then execution steps (states’ changes) are morphisms between states.

3.1. Simple imperative language Jane

For our aims, we define a simple language Jane which consists of all traditional

van Dijkstra’s constructs (D-Charts) for imperative languages and we formulate

principles of structural operational semantics in a category. The category serves

here as an abstract model of computer memory with possible states, i.e. it can be

considered as a state space. Our approach can also be extended for blocks, declara-

Coalgebras for modelling observable behaviour of programs 151

tions and user input but here we concerned only with basic imperative features of

language.

We introduce for Jane the following well-known syntactic domains:
 * ∈ 456 digit strings � ∈ 789 variables’ names � ∈ :;<=9 arithmetic expressions � ∈ >;<=9 Boolean expressions ' ∈ ?@8@6 statements

The Jane language contains the following statements: assignment, empty statement

(considered also as an empty sequence of statements), sequences of statements,

conditional statement and prefix logical cycle statement:
 ' ∷= � ≔ �	|	skip	|	'; '	|	if	�	then	'	else	'	|	while	�	do	'

Semantics of arithmetic and Boolean expressions are formulated in [23].

Each variable in a program is stored in computer memory. A variable is consid-

ered as a container for some value. In our language we consider only implicit types

of variables - integer numbers. Here the transient data are Boolean values, but they

are never stored as stable values in memory.

We assume that each variable occurring in a program is implicitly allocated and

we do not consider the variables’ declarations. A value of allocated variable can be

assigned and modified inducing a change of state.

3.2. Signature for states and their representation

States we define as an abstract data type. Its signature consists of types and

operation symbols on the type '!�!�:

Σ������ !%&� : '!�!�,(�",(�)#�, '!�!3$&* : �*�!: → '!�!���!: (�", '!�!� → (�)#�*��!: '!�!3, '!�!� → '!�!�

The operation symbols have the following intuitive meaning: �*�! creates the initial
state of a program and ��! returns a variable value in a given state.

Now we assign the representation to the signature Σ�����. We assign to the type (�)#� the set of integers together with the undefined value ⊥:

 78A5; = ℤ ∪ �⊥�. (17)

W. Steingartner, V. Novitzká 152

The type (�" is represented by a countable set of variables’ names 789. The type '!�!� is represented by a set of states ?@8@;. Every particular state ∈ ?@8@; is de-
fined as a function

 : 789	 → 78A5;.

(18)

Each state expresses one moment of program execution, roughly speaking a snap-

shot. Then any state is expressed as a sequence

 = 〈���,B�
, … , ��� ,B�
〉 (19)

of ordered tuples ��� ,B�
 where �� is the name of variable with its actual value B� .
The first two operations in signature we define as follows. The operation C�*�!D	creates the initial state
 of a program with no variable defined by

 = C�*�!D = 〈�E, E
〉, (20)

where E represents an empty position and an empty value. The operation C��!D re-
turns the value of a selected variable and is defined as follows:

 C��!D��� ,
 = FB� , if	��� ,B�
 ∈ ;
⊥, otherwise.

 (21)

Such defined states we consider as category objects in our model. We also consider

a special state expressing the undefined state

 � = 〈�⊥, ⊥
〉. (22)

3.3. Operational semantics of Jane and category of states

In this section we sketch how to construct a categorical model based on struc-

tural operational semantics. The most important feature of this semantic method is

the detailed description of a program execution in small steps.

We construct a model of structural operational semantics as a transition system,

which models program behaviour on a state space [24]. The execution of a state-

ment is defined by inference rules which are listed in [24, 25].

A step of execution with a possible change of state is in structural operational

semantics expressed as a transition 〈', 〉 ⇒ �. This transition is a relation between
an input state and an output state �. Any change of state is done as one-step ac-
tion [23]. On the other hand, if a statement ' is not executed in one step, then the
transition is expressed as follows:

 〈', 〉 ⇒ 〈'�, ′〉. (23)

where '� is a sub-statement of ' that still should be executed. In both cases the
transition rules express one action during the program execution.

Coalgebras for modelling observable behaviour of programs 153

A categorical model, the category ��G��H	 we construct as follows. We consider:

• category objects as states from ?@8@;, and
• category morphisms as transitions.

The change of state we define by the following function *��! from signature:

 *��!: ?@8@6 → �?@8@; → ?@8@;
. (24)

For a statement ' the function *��!C'D: ?@8@; → ?@8@; is defined as follows:
 *��!C'D�
 =

=

IJ
JJ
K
JJ
JL
 � = M� ⟼ C�D N if	' = � ≔ �; if	' = skip	or	' = while	�	do	'	and	C�D = Q8AR;;*��!C'�� ;'�D� ′
 if	' = '�;'�	and	〈'�;'�, 〉 ⇒ 〈'��; '�, ′〉;*��!C'�D� ′
 if	' = '�;'�	and	〈'�;'�, 〉 ⇒ 〈'�, ′〉;*��!C'�D�
 if	' = if	�	then	'�	else	'�	and	C�D = @95;;*��!C'�D�
 if	' = if	�	then	'�	else	'�	and	C�D = Q8AR;;*��!C';while	�	do	'D() if	' = while	�	do	'	and	C�D = @95;;	��$"!() otherwise.

So any morphism in the category of states can be considered as a function *��!C'D.	 A morphism ��$"! is a unique morphism which sends any state to the
undefined state �:

 ��$"!: ⇢ � (25)

and it represents the situation when an error occurs during the program execution

and the program cannot continue its execution. Because from any object in a cate-

gory, there exists only one morphism into the undefined state, it is an object which

has a property of terminal object 1 in the category.

3.4. Coalgebra for Jane as a transition system

An F-coalgebra, also called coalgebra of type F or F-system, is a pair (�, �)
where � is a state space of the coalgebra and � is the structure map of the coalgebra
on � (8):

 �:� →
��
.

This structure map acts as a destructor operation. It takes an element of the

F-coalgebra and decomposes the elements into their constituent parts. This is

a common feature of coalgebras, and this point of view is dual to the point of view

that algebras are objects together with combinatory principles [26-28].

W. Steingartner, V. Novitzká 154

An endofunctor on the category of states

: ��G��H → ��G��H (26)

for coalgebra is of the type
��
 = 1 + � where 1 stands for a singleton of an un-
defined value and � is a placeholder for a state space.

In our case, a state space is the set of category objects ��G��H��� = ?@8@; and
{ ⊥} = 1 is a singleton set containing only an undefined state. The endofunctor

on the category of states is defined as follows:

�?@8@;	
 = 1 + ?@8@;. (27)

This endofunctor sends objects ∈	?@8@; to objects:

�
 = � + *��!C'D , (28)

and morphisms to morphisms:

�*��!C'D
 = ��$"! + *��!C'D. (29)

Applying the functor
 on statements in program, we get steps of its execution.

Example 2. We show a simple example of defining structural operational

semantics of a program written in Jane.

We consider the simple program with input values � and % that would be sorted
according the descending order. Namely if � ≤ %, � and % should switch their
values.

We show the solution for both possible cases, when the Boolean expression in the

conditional statement evaluates to @95; and then to Q8AR;.
Let the program contains only one statement ':
 ' = if	(� ≤ %)	then	(� ≔ �; � ≔ %; % ≔ �)	else		skip	

and let the input states be:

a)
 = [� ↦ S,% ↦ TU, � ↦ U]; and
b)
� = [� ↦ TU,% ↦ V, � ↦ U].

In the case a) when the condition evaluates to @95;,

 C� ≤ %D�

 = @95;, (30)

 we have the following sequence of states:

�

 = 1 + *��!C'D�

 = *��!C� ≔ �; � ≔ %; % ≔ �D�

 =

= *��!C� ≔ %;% ≔ �D� �
 =

= *��!C% ≔ �D� �
 =

= �
 (31)

The sequence of states during the program execution is depicted in Figure 1.

Coalgebras for modelling observable behaviour of programs 155

Fig. 1. States during the program execution - case a

In the case b) the condition evaluates to Q8AR;,

 C� ≤ %D�
�
 = Q8AR;, (32)

the execution of program is evaluated as follows:

 *��!C'D�
�
 = *��!Cskip	D�
�
 =
� , (33)

so the initial state is unchanged (Fig. 2).

Fig. 2. An unchanged state - case b

In our program, the variables � and % store the observable values. The variable � is
an auxiliary variable and it is not observable for a program user.

∎

4. Conclusion

In this short contribution, we presented the main ideas of the coalgebraic

approach of the behavioural theory and the process of defining coalgebra for

observing the behaviour of programs and program systems. The main part of our

paper is the coalgebra for the Jane simple imperative language, constructed as tran-

sition system in the sense of structural operational semantics. Such modelled

semantics are easy to comprehend and it gives illustrative information about execu-

tion steps for programs.

We would like to extend this approach for language with declarations,

input/output statements and procedures.

Our next goal is to investigate bisimilarity, the relation between states that look

to be the same and to formulate coinductive proofs of behaviour.

W. Steingartner, V. Novitzká 156

Acknowledgment

This work has been supported by Grant No. 002TUKE-4/2017: Innovative

didactic methods of education process at university and their importance in in-

creasing education mastership of teachers and development of students compe-

tences.

References

[1] Novitzká V., Mihályi D., Steingartner W., Coalgebraic behaviour of algebraic programs, Analele

Universitatii din Oradea, Proc. 8th International Conference on Engineering of Modern Electric

Systems,University of Oradea, Romania 2007, 9, 60-64.

[2] Rutten J., Universal Coalgebra: A Theory of Systems, Technical Report CS-R9652, CWI,

Amsterdam 1996.

[3] Jacobs B., Introduction to Coalgebra, Towards Mathematics of States and Observations, Version

2.0, 2012.

[4] Reichel H., Behavioural equivalence - a unifying concept for initial and final specifications, 3rd

Hungarian Computer Science Conference, Akadémia kiadó, 3, 1981.

[5] Gumm P., Elements of the General Theory of Coalgebras, Notes of Lecture given at

LUATCS’99: Logic, Universal Algebra, Theoretical Computer Science, Johanesburg 1999.

[6] Jacobs B., Objects and Classes, Co-Algebraically, [In:] Object Orientation with Prallelism and

Persistence, Volume 370 of the series The Kluwer International Series in Engneering and Com-

puter Science, Springer US, 1996, 83-103.

[7] Jacobs B., Rutten J., A tutorial on (co)algebras and (co)induction, Bulletin of the European

Association for Theoretical Computer Science 1997, 62, 222-259.

[8] Slodičák V., Macko P., Some New Approaches in Functional Programming Using Algebras and

Coalgebras, [In:] Electronic Notes in Theoretical Computer Science 2011, 279, 3, 41-62.

[9] Ehrig H., Mahr B., Fundamentals of Algebraic Specification 1: Equations and Initial Semantics,

EATCS Monographs on Theoretical Computer Science, 1985.

[10] Jacobs B., Rutten J., An introduction to (co)algebras and (co)induction, [In:] D. Sangiorgi,

J. Rutten (eds), Advanced Topics in bisimulation and coinduction, 2011, 38-99.

[11] Chin W., A brief introduction to coalgebra representation theory, [In:] J. Bergen, S. Catoiu,

W. Chin (eds.), Hopf Algebras, Marcel Dekker Inc., USA, 2004, 109-133.

[12] Brandenburg M., Einführung in die Kategorientheorie, Springer Spektrum 2016.

[13] Walters R.F.C., Categories and Computer Science, Cambridge University Press, New York 1992.

[14] Awodey S., Category Theory, Carnegie Mellon University, 2005.

[15] Escardó M.H., Streicher T., Induction and recursion on the partial real line with applications to

real PCF, Theoretical Computer Science 1999, 210, 1, 121-157.

[16] Goldblatt R., A calculus of terms for coalgebras of polynomial functors, Electr. Notes of Thero-

retical Computer Science 2001, 14, 1.

[17] Kock J., Notes on polynomial endofunctors, Universitat Autonoma de Barcelona, 2007.

[18] Deák A., Mihályi D., Jakab F., Exception modeling in the category, Proc. ICETA, IEEE, New

York 2016, 49-53.

[19] Crole R.L., Lectures on (co)induction and (co)algebras, Dept. Mathematics and Computer Sci-

ence, University Leicester 2006.

[20] Fernández M., Programming Languages and Operational Semantics: A Concise Overview,

Springer, 2014.

Coalgebras for modelling observable behaviour of programs 157

[21] Nygaard M., Transition Systems, University of Aarhus, 2004.

[22] Ivaniga T., Ovseník Ľ., Turán J., Experimental Model of Passive Optical Network Technical

University of Košice. ICCC 2015: 16th International Carpathian Control Conference, May 27-30,

2015, Szilvásvárad, Hungary, 186-189.

[23] Steingartner W., Novitzká V., Categorical model of structural operational semantics of impera-

tive language, J. Informational and Organizational Sciences 2016, 40, 2.

[24] Plotkin G.D., The origins of structural operational semantics, J. of Logic and Algebraic Pro-

gramming 2004, 60-61, 3-15.

[25] Sculthorpe N., Torrini P., Mosses P.D., A modular structural operational semantics for delimited

continuations, Proc. Workshop in Continuations, London 2015, 63-80.

[26] Hughes J., A Study of Categories of Algebras and Coalgebras, Ph.D. Thesis, Carnegie Mellon

University, Pittsburgh PA 2001.

[27] Adámek J., Milius S., Moss L.S., Initial algebras and terminal coalgebras, 2010 (unpublished).

[28] Herceg Đ., Radaković D., Extensibility of an Interpreted Language Using Plugin Libraries,

Numerical Analysis and Applied Mathematics ICNAAM 2011, AIP Conf. Proc. 2011, 1389,

837-840.

