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Abstract: In this paper, we obtain the general exact solution of a nonlinear fin equation 

which governs heat transfer in a rectangular fin with linear temperature-dependent thermal 

conductivity using the partial Noether method. The relationship between the fin efficiency 

and the thermo-geometric fin parameter is obtained. Additionally, we obtained the relation-

ship among the fin effectiveness, the thermo-geometric fin parameter and the Biot number. 
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1. Introduction 

In this paper, we assume that the rectangular fin subjected to some assumptions 

such as steady state heat transfer operation with no heat generation, the fin tip 

is insulated, and the heat transfer is one dimensional. Under these assumptions, 

the energy balance equation of rectangular fin is given by [1-11] 

�� ��� ����� ����	− 
ℎ�� − ��� = 0, (1)

where, � is the fin temperature, � is the axial distance measured from the fin tip, �� is the cross-sectional area of the fin, 
 is the fin perimeter,	�(�) is the thermal 

conductivity of the fin, ℎ is the heat transfer coefficient and �� is the ambient 

temperature. 

Here, we take the heat transfer coefficient ℎ as a constant and the thermal conduc-

tivity �(�)	 as a linear function of temperature [1-9] 

���� = ��1 + ��� − ����, (2)

where �� is the thermal conductivity of the fin at the ambient temperature ��,	� is 

a constant. 
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Substituting (2) into (1), we obtain 

���� ����1 + ��� − ���� �����− 
ℎ�� − ��� = 0. (3)

To make Eq. (3) dimensionless; the following transformations are introduced 

[1-14] 

� =
� − ���� − �� ,			� =

�� ,			� = ���� − ���,			�� =

ℎ������ 	, (4)

where, � is the length of fin, �� is the temperature of the heat source where 

the fin is attached and the parameter  � is called  thermo geometric fin parameter. 

Using the transformations (4), Eq. (3) becomes 

��� ��1 + 	��� �����− ��� = 0. (5)

Equation (5) can be rewritten as ������+ ��	������+ �	������ −���(�) = 0. (6)

The boundary conditions are: 

At the fin tip (� = 0), since the fin tip is insulated, so ���� = 0. (7)

Using the transformation (4), Eq. (7) becomes ��(0) = 0. (8)

At the fin base  �� = ��, the fin temperature is the same temperature as the heat 

source �� ���� = �� . (9)

Using the transformation (4), Eq. (9) becomes �(1) = 1. (10)

Approximate solutions of Eq. (6) with boundary conditions (8) and (10) are 

investigated using the Parameterized Perturbation method in [1], by using optimal 

homotopy asymptotic method in [2], by using the homotopy analysis method 

in [3, 4], by using the Residue minimization technique in [5], by using the varia-

tional iteration method in [6] and by using the decomposition method in [7, 8]. 
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The homotopy analysis method is widely used in investigating many fin problems 

in [12-14]. In this paper, we will obtain the exact solution of Eq. (6) using 

the partial Noether method. 

The paper will be organized as follows: In section 2, the exact solution of 

Eq. (6) is obtained using the partial Noether method. In section 3, the fin efficiency 

will be discussed. In section 4, the fin effectiveness is studied. In section 5, we will 

discuss the obtained results in this paper. 

2. Partial Noether Method 

Definition [15, 16]. A Lie operator �  of a form 

� = � ��� + � ��� + ���� − ������ ���� +⋯ (11)

is called a partial Noether operator corresponding to a partial Lagrangian �, if there 

exists a function �, such that 

����+ ������ = �� − �′	�� ���� + �����, (12)

where �� is the total differentiation with respect to � and 
�

��
 is called the Euler- 

-Lagrange operator, which are defined as, 

�� =
��� + �� ��� + ��� ���� +⋯ 

 ��� =
��� − �� � ����	+⋯ 

(13)

Theorem [15, 16]. If the Lie operator (11) is a partial Noether operator corre-

sponding to a partial Lagrangian � of Eq. (6), then the first integral �	of (6) is 

given by � = � − ���, (14)

which is satisfied by the conservation law !�����|(�) = 0, (15)

where,   is a Noether operator which is defined as: 

 = � + �� − ��	�� ���′ + ⋯, (16)
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where, ���′ = ���′ − �� � �����	+⋯ (17)

Consider the partial Lagrangian of Equation (6) [15, 16] 

� =
�����
2

, (18)

where, ���� = −��� = �	����� − ���
1 + �� . (19)

To obtain the partial Noether operator of Eq. (6), we will substitute (18) and (19) 

into the condition (12) to obtain 

� #�����
2
$+ �����

2
����� = �� − �′��#�	����� − ���

1 + �� $+ �����. (20)

Substituting (11) into (20), we obtain the determining equation 

	(��� − �′���)�′ + �����2
����� = �� − �′�� #�	����� − ���

1 + �� $+ �����. (21)

Let,	� = ���,��,			� = �(�,�) and  � = �(�,�),  the determining equation (21) 

becomes 

−�� + ����� + 1
� + #−�� −

����� + 1
� + ��$�� + � ��� + 1

� − 1

2
��	 ����	

+ �− �	��� + 1
+ �� −

1

2
��	 ����� = 0. 

(22)

Equating the coefficients of the derivatives of � with zero, we obtain 

��′�	: ��� + 1
� − 1

2
�� = 0, (23)

��′��: −
�	��� + 1

+ �� −
1

2
�� = 0, (24)

��′�: −�� −
����� + 1

� + �� = 0, (25)

��′�
: −�� + ����� + 1
� = 0. (26)
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The solution of system (23)-(26) is given by 

� = 6�1 + ����,			� = 0,			� = −���3 + 2�����. (27)

Substituting (18) into (16), we obtain 

 ��� = �	�� − � �����
2
	. (28)

Substituting (27) and (28) into (14), we obtain 

� = −���3 + 2����� + 3�1 + ���������. (29)

Suppose the first integral 	� = %�, hence, we obtain 

−���3 + 2����� + 3�1 + ��������� = %�, (30)

where %� is a constant. Using the boundary condition (8), we can determine 

the constant %� as follows 

−�
��3 + 2��
��� = %�, (31)

where, �
 is the temperature of fin at the fin tip  �� = 0�. Substituting (31) into 

(30), we obtain 

�
��3 + 2��
��� − ���3 + 2����� + 3�1 + ��������� = 0, (32)

Let, 

� = &���− 1�	. 
Hence, Eq. (32) becomes 

&�(�)� =
��

3��&	(�)� �−���
 + 1��(2��
 − 1) + 2�	&	(�)	 − 3��&	(�)��	. (33)

Integrating Eq. (33), we obtain 

' ���




=
−√3��� ' &�−���
 + 1��(2��
 − 1) + 2�	&	 − 3��&�����	�&��

�
�

���
�
�

. (34)

Hence, we obtain the following exact implicit solution of Eq. (5) 
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� = −
√3)−2*	�+* ,-sin�- 1√2√3�

./ − 4�0 �
12 2√30* 1
− * ,-sin�- 1√2√3�

./ − 4�0 �1 2 2√30* 1
+ 4���
 + 1�-3-sin�- 1√2√3�

./ − 4�0 �
122√30* 1
− 3-sin�- 1√2√3�

./ − 4�0 �1 22√30* 114, 

(35)

where, , is the incomplete elliptic integral of the second kind, which is defined as [17] 

,�5|6� 	= ' )1 −6	sin�(7) d7�




, 

 3 is the incomplete elliptic integral of the first kind, which is defined as [17] 

3�5|6� 	=8 1)1 −6	sin��7�d7
�




, 

and 0 = )3 − 4��
 − 4���
�, * = −3 + √30 − 6��
, / = √3 −
�

�
�3 + 2�
��. 

The solution (35) has an unknown parameter namely �
. This parameter can be 

easily determined with the help of the boundary condition ��1� = 1 as follows: 

1 = −
√3)−2*	�+* ,-sin�- 1√2√3�

./ − 4�0 �
122√30* 1
− * ,-sin�- 1√2√3�

./ − 4�0 1 22√30* 1
+ 4���
 + 1�-3-sin�- 1√2√3�

./ − 4�0 �
122√30* 1
− 3-sin�- 1√2√3�

./ − 4�0 12 2√30* 114. 
(36)
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Equation (36) shows the relation between the temperature at fin tip �
 and the 

thermo-geometric parameter � and �. 
 

 

Fig. 1. Plot of the relation (36) between � 

and �� for various values of 	� 
Fig. 2. Plot of the relation (35) between � 

and � for various values of 	� when � = 2 

Figure 1 shows the effect of the thermo-geometric parameter � on the fin tip tem-

perature �
. We find that the fin tip temperature �
 decreases with increasing �. 
Figure 2 shows the distribution of fin temperature � along the fin. We find that 

the fin temperature decreases with increasing �. 
3. Fin efficiency 

The fin efficiency 9		is the ratio of the actual heat transfer rate :� 	from the fin to 

ideal heat transfer :�  rate from the fin if the entire fin were at base temperature 

[3-11]  

9 =
:�:�

=
; <	ℎ	�� − ����



��<�	ℎ��� − ��� = ' �	��.�




 (37)

Using Eq. (5), Eq. (37) becomes 

9 =
1��
' ��� ��1 + 	��� ����� 	�� =

1��
=1 + 	���1����(1) − 1 + 	���0�����0�>�




	, (38)

Using the boundary conditions (8) and (10), Eq. (38) becomes 

9 =
�1 + 	����

��(1)	, (39)
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From (32), when � = 1, we obtain 

���1� = �√3�1 + ��?�3 + 2��− �
��3 + 2��
�. (40)

Substituting (40) into (39), we obtain 

9 =
1√3�?�3 + 2��− �
��3 + 2��
�	. (41)

Using the relations (41) and (36), we can plot the relation between the efficiency 9 

and the thermo-geometric fin parameter  � (see Figure 3). 

3. Fin effectiveness 

Fin effectiveness ϵ is the ratio of heat transferred from the fin area :� to the 

heat which would be transferred if entire fin area was at base temperature :� 	[11] 

@ = :�:�

=
; <	ℎ	�� − ����



����ℎ��� − ��� = A' �	��.�




 (42)

where, A =  
��

��

  is a parameter which depends on the fin geometry. 

From (37), we find @ = A	9. (43)

Substituting (41) into (43), we obtain 

@ = A√3�?�3 + 2��− �
��3 + 2��
�	. (44)

The parameter � can be rewritten in the form �� = �B	A. (45)

where, �B =  
��

��

  is the Biot number. 

Substituting (45) into (44), we obtain 

@ = . A
3�B 	�3 + 2��− �
��3 + 2��
��	. (46)

Using the relations (45), (46) and (36), we can plot the relation between the fin 

effectiveness @ and the parameters A and �B (Figures 4 and 5). 
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Fig. 3. Plot the relation between the efficiency 

� and the thermo-geometric parameter � 

for various values of � 

Fig. 4. Plot the relation between the effective-

ness of fin �  and � when 	
 = 0.2 

for various values of � 

Figure 3 shows the effect of the thermo-geometric parameter � on fin efficiency  �. 

We find that the fin efficiency � decreases with increasing �. Figure 4 shows 

the effect of the parameter A on fin effectiveness  @. We find that fin effectiveness  @  increases with increasing A. 
 

 

Fig. 5. Plot the relation between the fin effectiveness � and 	
 when � = 2 

for various values of � 

 

Figure 5 shows the effect of the Biot number on fin effectiveness @. We find that 

fin effectiveness  @ decreases with increasing �B. 
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5. Discussions and concluding remarks 

In this paper, we obtain the general exact solution (35) of the fin equation (5) 

which is subjected to the boundary conditions (8) and (10). The solution is valid for 

all values of the thermo-geometric fin parameters � and �.  We observe in Figure 1 

that the fin tip temperature �
 decreases with an increase in the thermo-geometric 

parameter �. Figure 2 shows that the fin temperature � increases with an increas-

ing � (in other words, the temperature increases when approaching a heat source). 

The relation between the fin efficiency � and the parameters � and � is obtained. 

Figure 3 shows that the fin efficiency � decreases with increasing the thermo-geo- 

metric parameter �. The relation between the fin effectiveness @ and the parameters, � and Biot number �B is obtained. Figures 4 and 5 show that the fin effectiveness @  

increases when increasing A and decreases when increasing the Biot number �B. 
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