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Abstract. In this paper, a boundary integral method is proposed for the solution of 

a class of fourth-order two-boundary value problems described by the equation 

��� + ���, �, ��,���, ����� = 0,			� ∈ �0, ��, where P is a polynomial function of its argu-

ments. The differential equation is cast in an integral form and the weighted residual tech-

nique is used to generate the corresponding boundary integral equations. The boundary 

integral equations are then, solved by expressing the dependent variable, y, in terms of 

a power series. The proposed method is tested through four examples to show the applica-

bility of the method to solve a wide range of fourth-order differential equations including 

the nonlinear ones. 
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1. Introduction 

Many problems in applied science and engineering are modelled by fourth-order 

differential ordinary differential equations. Examples are bending of beams and 

axisymmetric shells, viscoelastic and inelastic flows, and electric circuits to men-

tion a few. Classical methods for obtaining exact solutions are limited to certain 

types of linear equations with simple boundary conditions. Particularly in nonlinear 

ordinary differential equations, obtaining such solutions becomes difficult and 

sometimes impossible and therefore one has to resort to semi-analytical or numeri-

cal methods [1-4]. The objective of this paper is to present a boundary integral 

method [5-7] for solving a class of boundary value problems which are represented 

by fourth-order ordinary differential equations of the following form: 

 ��� + ���,�,��,���,����� = 0,			� ∈ �0, ��, (1) 

where P is a polynomial function of its arguments, and therefore the differential 

equation could be linear or nonlinear depending on the form of P. 
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The proposed method consists of two steps: First, Eq. (1)  is cast in an integral 

form (Eqs. (8), (9) and (10)). Then, the integral equations (8), (9) and (10) are 

solved by expressing the dependent variable y as a power series, the coefficients of 

which can be obtained by equating the terms of similar powers. In the next section, 

the integral equations are derived for general fourth order boundary value prob-

lems. This is followed by a brief description of procedure for generating the power 

series solution. Finally, the method’s capabilities are demonstrated through 

numerical examples. 

2. Integral equations 

The boundary and domain integral equations corresponding to Eq. (1) can be 

obtained by multiplying both sides of Eq. (1) by a weighing function y* and inte-

grating by parts four times over the domain (0,L), to get 

� �	�∗��	� − 
�		�∗����
�

�
+

�

�


��		�∗���
�

�
−
���	�∗� 	�

�

�
+ �	����	�∗	�� 

 +� �	�∗	��

�
= 0 (2) 

In order to get rid of the first domain integral, let us choose y* to be the 

fundamental solution corresponding to the fourth order operator, i.e. y* satisfies 

the following equation: 

 	�∗�� + �(� − �) = 0, (3) 

where �(� − �) is Dirac delta function, which has the following properties: 

 �(� − �) = �∞	� = �
0	� ≠ � � (4) 

 � ����	�(� − �)
�

��
	� = �(�) (5) 

 Using Eq. (3) in Eq. (2), we get the following equation 

���� = −�����0�	�∗�0, ��+ �������	�∗��, ��+ ����0�	�∗��0, �� 
 

−	������	�∗���, �� − ���0�	�∗���0, �� + �����	�∗����, �� 
 

 +	��0�	�∗����0, ��− ����	�∗�����, ��+ � 	�∗��, ��	�		��

�
 (6) 

Once, the weighing function �∗ is obtained, Eq. (6) yields the solution y 

in terms of the boundary terms and the integral containing P. �∗ can be obtained 
by successive integration of (3): 
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�∗�����, �� = −
1

2
����� − �� (7a)

�∗����, �� = −
1

2
����� − ��	(� − �) (7b)

�∗���, �� = −
1

4
����� − ��	(� − �)� (7c)

�∗��, �� = −
1

12
����� − ��	(� − �)	 (7d)

where ����� − �� = 1 for � > � and  ����� − �� = −1 for � < �. Using Eq. (7a) 

to (7d) in Eq. (6), we get 
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(8)

The first derivative of the solution can be obtained by differentiating Eq. (8) 

with respect to ξ 
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�

� 
(9) 

Similarly, higher order derivatives can be obtained by taking the proper deriva-

tives of Eq. (8). Equations (8) and (9) provide the solution and its derivative at any 

domain point in terms of the boundary values and the forcing function P and there-

fore, called the domain integral equations. In order to generate four equations 

necessary for obtaining the unknown boundary values in terms of the known 

boundary conditions, Eqs. (8) and (9) need to be applied at the two boundary points � = 0� and  � = ��. The resulted equations, written in a matrix form, are: 
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(10)

In a well-posed problem, half of the boundary values are known and therefore, 

if the polynomial P happened to be a function of x only, the above four equations 

can be used directly to obtain the other non-specified boundary values which 

in turn can be used in Eq. (8) to obtain the exact solution for the problem. 

On the other hand, If P happens to be a function of y and/or its derivatives, then 

the solution procedure proposed in the following section can be implemented. 

3. Solution of the integral equations 

First, we represent the solution y(ξ) by a power series, i.e. 

���� = &'���
�

��

 (11)

Inserting Eq. (11) into the right- hand side of Eq. (10) will transform the diffi-

cult integrals on the right-hand side of Eq. (10) into more readily solvable integrals 

and therefore the equation can be solved for the remaining boundary values 

in terms of the coefficients ak. In order to obtain the coefficients ak, k ≥ 0, use 

Eq. (11) and the results obtained from Eq. (10) in Eq. (8) and compute the integrals 

term by term to obtain an equation of the following form: 

&'���
�

��

= &(���
�

��

 (12)
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where pk is a polynomial in ak the form of which depends on the form of P that 

we started with. Equating the coefficients of similar powers of ξ from both sides, 

i.e. ak = pk leads to the complete determination of the coefficients ak , k ≥ 0, hence 

obtaining the required solution of Eq. (1). It should be noted that if P is nonlinear, 

pk will also be nonlinear and therefore the determination of the coefficients ak 

will involve solving nonlinear algebraic equations. To check the efficeincy of the 

proposed method, four examples are given below. 

4. Numerical examples 

To illustrate the implementation of the proposed method, we consider the 

following four examples. For comparison reasons, the problems have homogenous 

and nonhomogeneous boundary conditions and known solutions. All symbolic 

computations are performed using Mathematica. 

 

Example 1. For the purpose of explaining the procedure of the method in detail, 

we will start with the following fourth order differential equation with constant 

coefficients 

 ��� − ���� + ���	−12�� − 12		 = 0,					0 < � < 1 (13) 

subject to the following boundary conditions:	��0� = 0, ��1� = 15, ���0� = 4 

and 	���1� = 32, which has the exact solution: 

 � = (� + 1)� − 1 (14) 

Inserting y as expressed by Eq. (11) and the above four boundary conditions 

in Eq. (10) with P = −���� + ���	−12�� − 12	and L = 1, we get the four non-

prescribed boundary variables 

���	�0� =
56

5
−

1

6
'� +

3

10
'	 +

3

5
'� +

17

21
'� (15)

����	�0� =
146

5
+ '� −

21

10
'	 −

14

5
'� −

23

7
'� (16)

���	�1� =
237

5
−

1

6
'� +

1

5
'	 +

4

5
'� +

32

21
'� (17)

����	�1� = 	226

5
− '� +

9

10
'	 +

26

5
'� +

82

7
'� (18)

Using Eqs. (15)-(18), along with the given boundary conditions and the power 

series expansion of y in Eq. (8) and collecting coefficients of similar powers of ξ, 

yield the following equation 
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'� + '�	�+'�	��+'		�	 + '�	�� +.		.		. 
 

= 4� + )		28
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'� +

3

20
'	 +

3

10
'� +

17

42
'�* �� 

 

+ )73

15
+

1

6
'� −

7

20
'	 −

7

15
'� −

23

42
'�* �	 +.		.		. 

 

+ )1

2
−

1

12
'� +

1

4
'	* �� +.		.		. 

(19)

Equating the coefficients of similar powers of ξ, we obtain '� = 0, '� = 4, '� = 6, 	'	 = 4, '� = 1, '� = 0, + ≥ 3, hence is the exact solution of the problem 

is obtained. 
 

Example 2. Consider the following fourth order differential equation with variable 

coefficients 

��� + ��	 − 4����� + �1 − 2������ + �1 − 2���� + �1 + 2x + 2x� − x	�� 	 
 

 +	x	�3 − 3�� + �	�	 = 0, 0 < � < 1, (20) 

subject to  the boundary conditions ��0� = −2		����0� = −1,��1� = ����1� = −,. 
The exact solution given by 

 � = −,�	+� − 1	 (21) 

Following the same procedure, we use Eq. (10) to solve for the four unknown 

boundary variables: 

���0� =
11549

5040
−

5,
6

−
241

2520
'� −

271

5040
'� −

983

15120
'� +

6911

7560
'	 

 

+ 	31949

18480
'� +

67937

27720
'� 

(22)

�����0� =
83

60
− , +

19

20
'� +

17

30
'� +

25

28
'� −

3137

280
'	 

 

− 	5387

360
'� −

3889	
210

'� 
(23)

���1� =
9467

5040
−

4,
3

+
263

2520
'� +

299

5040
'� +

11

189
'� −

13751

15120
'	 

 

− 	 36251

18480
'� + −

168407

55440
'� + ⋯ 

(24)
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�����1� =
13

30
− , +

22

15
'� −

9

10
'� −

71

140
'� +

9203

840
'	 

 

+ 	36467

1260
'� +

67061

1260
'� 

(25)

For n = 5, the process of using Eqs. (22)-(25) in Eq. (8) and equating coeffi-

cients of similar terms yields the solution for the first six coefficients: '� = −2, '� = 0, 	'� = −
�

�
, '	 = −

�

�
, '� = −

�

��
	 and '� = −

�

���
	, which is identical to 

the expansion of the exact solution given by Eq. (21). More terms can be obtained 

by increasing the order of the employed power series. 

 

Example 3. Consider the following boundary value problem involving nonlinear 

boundary conditions which appears in the study of deformations of elastic beams 

on elastic bearings [8, 9]: 

��� −
24

61
(183�� − 116� − 2) = 0,					0 < � < 1, (26)

subject to the boundary conditions: ��0� = 0, ����1� = 0, 	���0� = 0, and �����1� =
��	���	(����)

��	���	���/���
. The appearance of third-order nonlinear boundary condi-

tion makes the problem challenging and difficult to solve. The exact solution 

of the above problem is given by [9]: 

� =
��
5

−
116��

305
−

2��
61

+ �� (27)

Following the same procedure and omitting the details, we obtain: 

'� + '��+'���+'	�	+'���+'���+'��� … 
 

= )73

61
−

12

61
csc )48

61
* sin�'��+ '� + '� + '	 + '� + '� + '�* �� 

 

+ )− 	 4

61
+

4

61
csc)48

61
* sin�'��+ '� + '� + '	 + '� + '� + '�* �	 

 

−
2��
61

−
116	��

305
+
��
6

 

(28)

Equating the coefficients of similar powers of �, we obtain: '� = '� = '	 = 0, '� = 1,'� = −
�

��
,'� = −

���

	��
, and '� =

�

�
	. 
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Example 4. In order to demonstrate the applicability of the method for solving 

nonlinear ordinary differential equations, let us consider the following one: 

��� + (��)�		 −
(1 + �)� − 6

(1 + �)�
= 0,					0 < � < 1 (29)

subject to the boundary conditions: ��0� = 0, ��1� = ��(2), ���0� = 1, ���1� =

= 1/2. The exact solution is given by [10] 

 � = ��	(1 + �)	 (30) 

Unlike the previous problems, the procedure of this one requires more power 

series terms in order to converge to the exact expansion of the solution given by 

Eq. (30). The convergence of the numerical values of the power series coefficients 

to their exact values is given in Table 1. 

Table 1 

 Coefficients of power series solution 

n a
0
 a

1
 a

2
 a

3
 a

4
 a

5
 a

6
 a

7
 a

8
 a

9
 

3 0.000000 1.000000 –0.504187 0.338652 
      

4 0.000000 1.000000 –0.498059 0.330935 –0.250000 
     

5 0.000000 1.000000 –0.501536 0.335132 –0.250000 0.200051 
    

6 0.000000 1.000000 –0.499149 0.332349 –0.250000 0.199972 –0.166641 
   

7 0.000000 1.000000 –0.500724 0.334146 –0.250000 0.200024 –0.166688 0.142866 
  

8 0.000000 1.000000 –0.499556 0.332838 –0.250000 0.199985 –0.166653 0.142851 –0.124997 
 

9 0.000000 1.000000 –0.500397 0.333767 –0.250000  0.200013 –0.166678 0.142862 –0.125003 0.111113 

Exact 0 1 –1/2 1/3 –1/4 1/5 –1/6 1/7 –1/8 1/9 

5. Conclusions 

The numerical results confirm that the proposed boundary integral method is 

capable of obtaining an accurate power series solution to a wide class of boundary 

value problems represented by fourth order ordinary differential equations. The last 

two examples clearly indicate that the proposed method is accurate even with 

problems involving nonlinear differential equations and/or boundary conditions. 

Furthermore, the method is easy to program using any symbolic software. 
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