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Abstract. In this paper, the problem of transverse and longitudinal damped vibration 

of the Γ type frame was formulated and solved. The effect of constructional damping 

of the column support and fixing bolt frame support on degree of vibration amplitude decay 

was presented. The vibration energy dissipation in the model (modelled by the rotational 

viscous dampers) is a result of the movement resistance taken into account in the frame 

supports. The eigenvalues of the system with respect to changes in system geometry and 

for a selected and variable damping coefficient values were calculated. 
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1. Introduction 

In work [1] the theoretical, numerical and experimental analysis of T type frame 

vibration and stability were presented. The investigated frame was loaded by longi-

tudinal force in relation to its bolt. The study of the dynamic properties of frames 

while taking into account influence of crack on a structural member were presented 

in publications [2-4]. The local flexibility is a function of the crack depth. A crack 

on a structural member changes the dynamic behaviour of the structure. The influ-

ence of crack localization on a Γ type frame transverse vibration was presented 

in [2]. Work [3] presents transverse vibration of a Γ type frame with additional 

discrete elements, whereas work [4] presents transverse and longitudinal vibration 

of two and three-bar frames with inclined members, and with ends and intermediate 

points elastically restrained. The determination of eigenfrequencies of a Γ type 

frame, which consists of a beam supported by a column and is submitted to inter- 

mediate elastic constraints, was presented in paper [5]. A hybrid analytical/numerical 

dynamic analysis of planar serial-frame structures was proposed in work [6]. Work 

[7] examined the free vibration of the simple Bernoulli-Euler beam with construc-

tional damping of supports. The influence of constructional damping, where 

damping in the system was represented by translational and rotational dampers 
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on vibrations of a simple beam, was also presented in study [8]. The authors of 

study [9] demonstrated the formulation and solution for the problem of transverse 

damped vibration in T type frame. In this work, the vibration energy dissipation 

is a result of constructional damping in the points of the frame mounting and 

the supports. 

This study formulates and solves the problem of the Γ type frame transverse 

and longitudinal damped vibration. In the adopted model (Bernoulli-Euler beams), 

dissipation of vibration energy derives from the constructional damping in the frame 

supports (column support and fixing bolt frame support). Constructional damping 

of supports was modelled using rotational viscous dampers with a linear character-

istic. The term “constructional damping” using in this work, describes a motion 

resistance between the moving components of the support [10]. In this work, the 

dependence of the real and the imaginary part of the first eigenvalue of the system 

on changes in system geometry and variable damping coefficient were presented. 

2. Formulation of the problem 

2.1. Physical scheme of the system 

The physical scheme of the Γ type frame is presented in Figure 1. The dissipa-

tion of vibration energy in the model occurs as a result of movement resistance 

in column support and fixing bolt frame support. The constructional damping of 

supports was modelled using rotational viscous dampers. Constructional damping 

for column support and for fixing bolt frame support were denoted by CR1 and CR2, 

respectively. 

 

 

Fig. 1. Scheme of the system under consideration 
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2.2. Mathematical model of the system 

Equations of motion of the Γ type frame were denoted as: 
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where: 

i = 1, 2, 

Wi(x,t) - transverse displacements of the column and the bolt frame, 

Ui(x,t) - longitudinal displacements of the column and the bolt frame, 

Ei - Young’s modulus for the column and the bolt frame, 

Ai - cross-sectional areas of the column and the bolt frame, 

Ji - moment of inertia in the column and the bolt frame cross-sections, 

ρi - column and bolt frame material densities, 

x - spatial coordinate, 

t - time. 

Solutions of equations (1) and (2) are in the form: 
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Substitution of (3) into (1) and (4) into (2) leads to: 
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The boundary conditions are as follows: 
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The solutions for the equations (5) and (6) are given by: 
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Finding the solution of boundary problem leads to the calculation of integrated 

eigenvalue of the system (ω
*
). Depending on the solution adopted, the real and  

imaginary parts of the eigenvalues can be positive or negative and can represent 

damped vibration frequency or the degree of vibration amplitude decay. In this 

work, the real part Re(ω
*
) of the solution corresponds to the damped vibration, 

whereas the imaginary part Im(ω
*
) describes the degree of vibration amplitude 

decay. 

3. Numerical calculation results 

Calculations were carried out for the variable system geometry (change in the 

length of column and bolt frame) and for selected damping coefficients. 

3.1. Parameters of the system 

Dimensionless constructional damping parameters were used in the study: 

µ1 for damping in the column support and µ2 for damping in the fixing bolt frame 

support. The length of the column and bolt frame were denoted as l1 and l2, respec-

tively. Computations were carried out for the data contained in Table 1. 
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Table 1 

Physical and geometrical parameters of the model 

Parameter Value 

Length of the column l
1
 [m] variable 

Length of the bolt l
2
 [m] variable 

Height of the column H
1
 [m] 0.02 

Height of the bolt H
2
 [m] 0.02 

Width of the column B
1
 [m] 0.02 

Width of the bolt B
2
 [m] 0.02 

Young modulus for the material of the column and bolt E
i
 [Pa] 2.06e11 

Material density in column and bolt ρ
i
 [kg/m3] 7700 

3.2. Graphic presentation of research results 

The results of the calculations are presented in Figures 2 to 7. The influence 

of constructional damping on transverse and longitudinal vibration of the Γ type 

frame with changing length (column and bolt) were presented in 2D figures and 

spatial presentation. 

Figure 2 presents the dependence of the first eigenvalue of the Γ type frame 

on simultaneous changes in the length of the column and the bolt frame (l) without 

damping (µ = µ1 = µ2 = 0). 

 

 

Fig. 2. The dependence of the first eigenvalue of the system 

on the column and the bolt length  

The dependence of the real Re(ω
*
) and imaginary Im(ω

*
) parts of the first  

eigenvalue of the Γ type frame on simultaneous changes in the length of the  

column and the bolt (l = l1 = l2) for damping coefficient µ = µ1 = µ2 = 0.4 is  

presented in Figures 3a,b. 
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Fig. 3. The dependence of the first eigenvalue (real part (a) and imaginary part (b)) 

of the system on the column and the bolt length 

Figure 4 presents the relationship between the real (Fig. 4a) and the imaginary 

(Fig. 4b) part of the first eigenvalue of the system and changes in system geometry. 

During the research, the column length l1 and bolt length l2 were changed for 

selected value of damping coefficient µ = µ1 = µ2 = 0.4. 

 

     

Fig. 4. The relationship of the real (a) and imaginary (b) part of the first eigenvalue 

of the system on changes in the column length l1 and the bolt length l2 

Figure 5 presents the dependence of the real (a) and imaginary (b) parts of  

the first eigenvalue of the Γ type frame on changes in damping coefficient µ for  

selected value of the column and the bolt length (l = l1 = l2 = 2). 

 

         
Fig. 5. The dependence of the first eigenvalue (real part (a) and imaginary part (b)) 

of the system on damping coefficient µ 

a) b) 

a) b) 

a) b) 
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The effect of changes in coefficients of damping µ1 in the column support and of 

damping µ2 in the fixing the bolt frame support on the first eigenvalue of the Γ type 

frame is illustrated in Figure 6a,b. Calculations were carried out for the column 

and bolt length l = 2. 

 
a) b) 

     

Fig. 6. The relationship of the real (a) and imaginary (b) part of the first eigenvalue 

of the system on changes in damping coefficient µ
1
 and µ

2
 

Further investigations were focused on the determination of the dependence 

of the first eigenvalue of the Γ type frame on changes in constructional damping 

coefficient µ = µ1 = µ2 and changes in the length of column and bolt l = l1 = l2. 

Figure 7 presents this relationship for the real (Fig. 7a) and the imaginary (Fig. 7b) 

part of the first eigenvalue of the system. 

 
a) b) 

     

Fig. 7. The relationship of the real (a) and imaginary (b) part of the first eigenvalue of the 

system on changes in column and bolt length l and variable damping coefficient µ 

The limitation of the research to the analysis of the first eigenvalue of the system 

with the geometrical and damping change, results from the fact of decisive  

importance in engineering practice. 
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4. Conclusions 

In the work, the influence of changes in geometry of a damped system on its 

eigenvalues and the effect of constructional damping of the supports on eigenvalues 

with selected geometry of the system were examined. The study demonstrated that 

taking into consideration constructional damping in the system causes significant 

changes in the Γ type frame eigenvalues. During the studies, the first natural fre-

quency of system without damping (Fig. 2) with the real part of the first eigenvalue 

of the damped system (Fig. 3a) were compared. The modification of the frame 

geometry does not affect the course of the first eigenvalue but only on increases 

its value. The increase in the length of beams modelled the system (l) causes  

a decrease of the degree of vibration amplitude decay (Fig. 3b). Changes in the 

column (l1) and bolt (l2) lengths causes changes in both real and imaginary parts of 

the first eigenvalue of the system (Fig. 4a,b). 

Substantial changes can be observed in the degree of vibration amplitude decay 

of the first eigenvalue Im(ω
*
) in the case of changes in the constructional damping 

coefficients. The decrease of vibration amplitude of the system is represented by 

the increase of the degree of vibration amplitude decay. In other words, this coeffi-

cient characterizes the damping ability of such a system. An increase in µ causes an 

increase in the degree of vibration amplitude decay Im(ω
*
) to maximum values, 

followed by Im(ω
*
) → 0 where µ = µ1 = µ2 → ∞ (Figs. 5b, 6b). The increase in the 

value of damping coefficients causes a steady decrease in the damped vibration 

frequency and the degree of vibration amplitude decay. These substantial changes 

in both Re(ω
*
) and Im(ω

*
) are caused by considerable intervention in the condi-

tions of system fixation (in extreme cases, the fixation points are changed from 

joint mountings into rigid mountings). 

Taking into account the constructional damping of supports in the solution of 

the boundary problem of the Γ type frame allows for determination of the column 

and bolt lengths for which vibration amplitudes of frame are the lowest. Therefore, 

the use of rotational dampers can be considered as an additional method of control-

ling the dynamics of the system studied. 
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