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Abstract. The article presents research of an open queueing network (QN) with the same 

types of customers, in which the total number of customers is limited. Service parameters 

are dependent on time, and the route of customers is determined by an arbitrary stochastic 

transition probability matrix, which is also dependent on time. Service times of customers 

in each line of the system is exponentially distributed. Customers are selected on the service 

according to FIFO discipline. It is assumed that the number of customers in one of the sys-

tems is determined by the process of birth and death. It generates and destroys customers 

with certain service times of rates. The network state is described by the random vector, 

which is a Markov random process. The purpose of the research is an asymptotic analysis 

of its process with a big number of customers, obtaining a system of differential equations 

(DE) to find the mean relative number of customers in the network systems at any time. 

A specific model example was calculated using the computer. The results can be used for 

modelling processes of customer service in the insurance companies, banks, logistics com-

panies and other organizations. 
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1. Introduction  

Exact results for finding state probabilities of Markov chains in the non-

stationary regime (transitional regime) was obtained only in certain special cases 

[1, 2] because of the large dimension of systems of difference-differential equa-

tions, which they satisfy. The diffusion approximation method for finding them 

with a large number of customers has been investigated in [3-5]. Its essence is to 

approximate a discrete stochastic process that describes the number of customers in 

network systems, a continuous diffusion process. In this paper, this method is used 

to analyze an open Markov network with a number of features that were not previ-

ously considered in other works. 
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Queueing networks (QN) are used in the mathematical modelling of various 

economic and technical systems related to the servicing of client requests, the 

number of which is actually limited. Often, however, the total number of customers 

in studied systems changes over time. It predetermines to use at their simulation an 

open QN with a limited number of customers serviced in them. 

Consider an open QN, consists of n + 1 queueing systems (QS) S0, S1, ..., Sn. 

Supposing that serviced parameters of its network depend on time t, let the number 

of service lines in the system Si in time t describe a function of time mi(t), that takes 

integer values, 0i= ,n . Service probability of customer in each service line of the 

system Si on the time interval [t + ∆t] equal to µi(t)∆t + o(∆t), 0i= ,n . Customers 

are selected on the service according to FIFO discipline. Customer and service of 

which the QS Si was completed, with probability pij(t) move in the queue of QS Sj,

0i, j = ,n . Transition matrix, P(t)=||pij(t)|| is the matrix of transition probabilities 

of an irreducible Markov chain and depends on time 0 ≤ pij(t) ≤ 1. In addition, we 

assume that the number of customers in the system 
0
S , except for functions µ0(t), 

pi0(t), m0(t) determined by the birth and death process, which generates new cus-

tomers with the intensity 
0
( )
+
λ t  and destroys the existing with intensity ( )0

λ t
− . 

Hence, the object under study is an open QN, the total number of customers which 

is limited and varies in accordance with the process of birth and death, occurring in 

the system 
0
S . The network state is determined by the vector 

 

( ) ( ) ( ) ( )( )0 1 n
k t k t ,k t ,.....,k t= ,                                         (1) 

 

where ( )i
k t  - count of customers in the system 

i
S  in time t , 0i= ,n . Vector (1) in 

view of the above, is a Markov random process with continuous time and a finite 

number of states. Obviously, the total number of customers serviced in the network 

at time t  equals ( ) ( )
0

n

i

i=

K t = k t∑ . We carry out the asymptotic analysis of Markov 

process (1) with a big number of customers using the technique proposed in [6, 7]. 

Note that the analytical results, when the parameters of service customers and tran-

sition probabilities of customers not dependent on the time, have been obtained in 

[8]. Supposing that QN operate under a high load regime of customers, i.e. value 

( )K t . It is sufficiently big, but not limited:0 ( )K t K≤≪ . 

This article derives a partial differential equation of the second order, and is the 

equation of the Kolmogorov-Fokker-Planck equation for the probability density of 

the investigated process. A system of non-homogeneous ordinary differential equa-

tions of the first order for the average values of the components of the vector of the 

network state was obtained. The solution of this system allows us to find the aver-

age relative number of customers in each QS in interested time. 
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2. The derivation of system of differential equations for the average 

relative number of customers in the network system 

We introduce 
i
I  – ( )1n + -vector, all components are equal to zero except i-th, 

which equals 1, 0i= ,n . Consider all possible transitions to the state ( )k t+∆t = 

( )k,t+ ∆t= of process ( )k t  during time ∆t: from the state ( )i jk+I I ,t−  can get into 

( )k,t+ ∆t  with probability ( ) ( ) ( )( ) ( ) ( )min 1i i i ijµ t m t ,k t + p t ∆t+ο t∆ , 0i, j = ,n ; 

from the state ( )0
k+I ,t  we can get into ( )k,t+∆t  with probability 

( ) ( )( ) ( )0 0
1λ t k t + ∆t+ο ∆t

−

; from the state ( ),tIk 0−  we can get into ( )k,t + ∆t  with 

probability ( ) ( ) ( )0

0

1

n
+

i

i=

λ t K k t + ∆t+ο ∆t
 

− 
 
∑ ; from the state ( )k,t  – ( )∆t+tk,  with 

probability ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )0 0 0

0 0

1 t min t

n n
+

i i i i

i= i=

µ m t ,k t +λ t k t +λ t K k ∆t+ο ∆t
−

  
− −  

  
∑ ∑ ; 

from other states – ( )k,t + ∆t  with probability ( )ο ∆t .  

From the formula of total probability, we obtain a system of difference equa-

tions for the state probabilities ( )P k,t : 
 

( ) ( ) ( ) ( ) ( )( ) ( )
0

min 1

n

i j i i i ij
i, j=

P k,t+ ∆t = P k+ I I ,t µ t m t ,k t + p t +−∑  

( ) ( ) ( )( )0 0 0
1+P k+ I ,t λ t k t + ∆t+

−

 

( ) ( ) ( ) ( )0 0

0

1

n
+

i

i=

+P k I ,t λ t K k t + ∆t + P k,t
 

− − × 
 
∑  

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )0 0 0

0 0

1 min .
n n

+

i i i i

i= i=

µ t m t ,k t + λ t k t + λ t K k t ∆t +ο ∆t−

   
− −   

   
∑ ∑  

 

Therefore, the system of difference-differential Kolmogorov equations for these 

probabilities is: 
 

( )
( ) ( ) ( )( ) ( ) ( ) ( )( )

0

min

n

i i i ij i j
i, j=

dP k ,t
= µ t m t ,k t p t P k+ I I ,t P k,t +

dt
− −∑  

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )
0

min 1 min ( )
n

i i i i i i ij i j
i, j=

+ µ t m t ,k t + µ t (m t ,k t p t P k + I I ,t +− −∑  

( ) ( ) ( ) ( )( ) ( ) ( )0 0 0 0 0
+λ t k t P k+ I ,t P k,t + λ t P k + I ,t +
− −

−  

( ) ( ) ( ) ( )( ) ( ) ( )0 0 0 0

0

n

+ +

i

i=

+λ t K k t P k I ,t P k,t + λ t P k I ,t
 

− − − − 
 
∑ .  (2) 
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The solution of system (2) in an analytic form is a difficult task. We shall there-

fore consider the asymptotic case of a big number of customers on the network, 

that is, we assume that 1K ≫ . To find the probability distribution of the random 

vector ( )k t , we move on to the relative variables and consider the vector ( )tξ . 

Possible values of this vector at a fixed t  belong to a bounded closed set  

 

( )0 1

0

0 0 ,  1
n

n i i

i=

G= x= x , x ,...,x : x , i= ,n x
 

≥ ≤ 
 

∑ ,  (3)  

 

in which they are located in nodes ( )1n + - dimensional lattice at a distance 
1

ε =
K

 

from each other. By increasing K  “filling density” of set G  possible vector com-

ponents ( )ξ t  increases, and it becomes possible to consider that it has a continuous 

distribution with probability density function ( )p x,t , which satisfies the asymptot-

ic relation ( ) ( )1n+

k
K P k,t p x,t

→∞
→ . We use the following approximation func-

tion ( )P k,t : ( ) ( ) ( )1 1n+ n+
K P k,t = K P xK,t = p x,t , x G∈ . 

Rewriting the system of equations (2) for the density ( )p x, t , we obtain 

 

( )
( ) ( ) ( )( ) ( ) ( )( )

( ) ( )
( )( )

( )

( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )

0

0

0 0 0 0 0

0 0 0 0

0

min

min

1 ,

n

i ij i i i j
i, j=

n
i i

i ij i j
i, j= i

n
+ +

i
i=

p x,t
= K µ t p t l t ,x p x+e e ,t p x,t +

t

l t ,x
+ µ t p t p x+e e ,t +

x

+Kλ t x p x+e ,t p x,t + λ t p x+e ,t +

+Kλ t x p x e ,t p x,t + λ t p x e ,t

− −

∂
− −

∂

∂
−

∂

−

 
− − − − 

 

∑

∑

∑

 

 

where 
1

i i
e I

K
= , 0i= ,n . If ( )p x, t  twice continuously differentiable in x , then 

valid the following expansion 
 

( ) ( )
( ) ( )

( )
22

2

2
2

i

i i

p x, t p x, tε
p x ± e , t = p x, t ± ε + +o ε

x x

∂ ∂

∂ ∂
, 

( ) ( )
( ) ( )

i j

i j

p x, t p x, t
p x+e e , t = p x, t + ε +

x x

 ∂ ∂
− −  ∂ ∂ 

 

( ) ( ) ( )
( )

2 2 22

2

2 2
2

2 i ji j

p x,t p x, t p x, tε
+ + +o ε

x xx x

 ∂ ∂ ∂
− 

 ∂ ∂∂ ∂ 
, 0i, j = ,n . 
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By using them, and that 1εK = , we obtain the following representation: 
 

( )
( ) ( )( ) ( )

( ) ( )

0

t min t t

n

i i i ij
i, j= i j

p x,t p x,t p x,t
= µ l ,x p +

t x x

 ∂ ∂ ∂
−  ∂ ∂ ∂ 

∑  

( ) ( ) ( )

( )
( )( )

( ) ( )
( ) ( )

( ) ( ) ( )

2 2 2

2 2

0

2 2 22

2 2

2
2

min

2
2

i ji j

n
i i

i ij
i, j= i i j

i ji j

p x,t p x,t p x,tε
+ +

x xx x

l t ,x p x,t p x,t
+ µ t p t p x,t ε +

x x x

p x,t p x,t p x,tε
+ + +

x xx x

 ∂ ∂ ∂
− + 

 ∂ ∂∂ ∂  

  ∂ ∂ ∂
+ −  

 ∂ ∂ ∂  

 ∂ ∂ ∂
− 

 ∂ ∂∂ ∂  

∑

 

( )
( ) ( )

( ) ( )
( ) ( )2 22

0 0 02 2

0 00 0
2 2

p x,t p x,t p x,t p x,tε ε
+λ t x + + λ t p x,t + ε + +

x xx x

− −

   ∂ ∂ ∂ ∂
   

∂ ∂∂ ∂      
 

( )
( ) ( )2

0 2

0 0 0

1
2

n
+

i

i=

p x,t p x,tε
+λ t x + +

x x

 ∂ ∂ 
− −   ∂ ∂    
∑  

( )
( ) ( )

( )
22

2

0 2

0 0

  .
2

+
p x,t p x,tε

+λ t p(x, t) ε + +O ε
x x

 ∂ ∂
− 

∂ ∂  
 

 

We introduce notations: 
 

( ) ( ) ( )( ) ( ) ( ) ( )0 0 0 0

0 0

t min t t t t 1

n n
+

j j j j 0 i
j= i=

A x, t = µ l ,x p λ x + λ x−
 

− − 
 

∑ ∑ ,  (4) 

( ) ( ) ( )( ) ( )
0

t min t t

n

i j j j ji
j=

A x,t = µ l ,x p∑ , ,n=i 1 ,    (5) 

( ) ( ) ( )( ) ( ) ( ) ( )00 0 0 0 0

0 0

t min t 1

n n
+

j j j j i
j= i=

B x,t = µ l ,x p t λ t x λ t x−
 

+ − − 
 

∑ ∑ ,  (6) 

( ) ( ) ( )( ) ( )
0

t min t t

n

ii j j j ij
j=

B x,t = µ l ,x p∑ , ,n=i 1 ,  (7) 

( ) ( ) ( )( ) ( )t minij i i i ijB x,t = µ l t ,x p t− , ji ≠ ,  (8) 

( )
( )
( ) 1
ji

ji

ji

p t ,i j,
p t =

p t ,i j,

 ≠


− =
 ( )

( )
( ) 1
ij

ij

ij

p t , i j,
p t

p t , i j,

 ≠
= 

+ =
 

( )
( )

j

j

m t
l t =

K
, 0j = ,n.   (9) 

 

Considering them, it turns out that in the case of asymptotic for  

a sufficiently big K distribution density p(x,t) of vector relative variables 
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( ) ( ) ( ) ( )( )
( )

0 1
...

n

k t
ξ t = ξ t ,ξ t , ,ξ t =

K

 
= 

 
 

( ) ( ) ( )0 1
...

n
k t k t k t

, , ,
K K K

 
 
 

 satisfies up to 

a ( )2O ε , where 
1

ε =
K

 the Kolmogorov-Fokker-Planck equation: 

 

( )
( ) ( )( ) ( ) ( )( )

2

0 02

n n

i ij
i= i, j=i i j

p x, t ε
= A x, t p x, t + B x, t p x, t

t x x x

∂ ∂ ∂
−

∂ ∂ ∂ ∂
∑ ∑ ,      (10) 

 

at points of existence of derivatives. 

Then, according to [9], expectations ( ) ( )( )i i
n t = M ξ t , 0i = ,n , accurate to 

terms order of magnitude ( )2Ο ε  determined from the system of DE 

 

( )
( )( )i

i i

dn t
= A n t

dt
, 0i= ,n .   (11) 

 

From (3), (4) it is obvious that the right-hand side of (11) are continuous  

piecewise linear functions. Such systems are appropriately addressed by  

dividing the phase space and find solutions in the areas of the linearity of the right 

parts. Let ( ) { }0,1, 2, ...,Ω t = n  – the components of the index set ( )tn . We divide 

( )Ω t  into two disjoint sets ( )0
Ω t  and ( )1

Ω t : ( ) ( ) ( ){ }0
1

i i
Ω t = i : l t < n t ≤ , 

( ) ( ){ }1
( ) : 0 j jΩ t j n t l t= ≤ ≤ . For fixed t  the number of partitions  

of the type equals 1
2
n+ . Each partition will be defined in the  

set ( ) ( ) ( ) ( )
0

0 1

n

i i

i=

G t = n t :n t , n t
 

≥ ≤ 
 

∑  of disjoint regions ( )tG
τ

 such that, 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 1

0

1 0 1

n

τ i i j j c
c=

G t = n t : l t < n t , i Ω t ; n t l t , j Ω t ; n t
 

≤ ∈ ≤ ≤ ∈ ≤ 
 

∑

1
1, 2, ..., 2

n+τ = , ( ) ( )
τ

G t =G t . 

You can write the system of equations (11) explicitly for each of the areas of 

phase space subdivision. Consider the field ( ) { } ( ) { }0 1
:  0 1,2,...,A Ω t = ,Ω t = n , 

which according to no queues in systems 
1 2
, ,...,

n
S S S  in average and the presence 

of queues in the system 
0
S . The system of differential equations (11) in this field is 

of the form: 
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

0 0 0 0 0 0 00

0 1

0 0 0 0

1

1

1

n n
+

i j j jo
i j=

n

i j j j j
j=

n' t = λ t n t +λ t n t µ t n t p t +µ t l t p t ,

n' t = µ t l t p t µ t n t p t ,i ,n.

−

=

  
− − +  

  

 + =


∑ ∑

∑

 (12) 
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The system (12) is a system of ordinary inhomogeneous DE. Its solution of 

a system for a big n is analytically difficult, so in the event of a network of a big 

dimension, it is appropriate to use numerical methods. 

3. Example 

In the computer system Mathematica, a mathematical programming procedure 

has been developed that implements calculation examples. It shows one example of 

the calculation of the average relative number of customers in the system network, 

which is a mathematical model of the processing of customer requests for an insu-

rance company. 

Consider the QN, consisting of 6 QS S0, S1, S2, S3, S4, S5, wherein K = 100000. 

Define the following transition probabilities between QS: p05(t) = 0.2cos
2
(3t);  

p04(t) = 0.2sin
2
(3t); p03(t) = 0.4cos

2
t; p02(t) = 0.4sin

2
t; p01(t) = 0.2sin

2
(2t); p00(t) = 

= 0.2cos
2
(2t); p10(t) = 1; pij = 0 in other cases. ( )

100000

10)5sin(5
0

+
=

t
tl . ( ) 17000

0
=tN ; 

( ) 13000
1
=tN ; ( ) 25000

2
=tN ; ( ) 23000

3
=tN ; ( ) 12000

4
=tN ; ( ) 10000

0
=tN . 

Let's pretend that ni(0) = 0, 1,5=i , and consider period where there are no 

queues in systems S1, S2, S3, S4, S5 in average. Then (12) takes the form 
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

5 5

0 0 00 0 0 0 0 0

1 0

1 0 0 0 0 1 1

1

2 0 0 0 0 2 2

1

3 0 0 0 0 3 3

1

4 0 0

1

1j j j i
j i

n

j j j j
j=

n

j j j j
j=

n

j j j j
j=

n

j j j
j=

n' t t n t p p t l t t t n t t n t ,

n' t = µ t n t p t + µ t l t p t t n t ,

n' t = µ t n t p t + µ t l t p t µ t n t ,

n' t = µ t n t p t + µ t l t p t µ t n t ,

n' t = µ t n t p t + µ

µ µ λ λ

µ

− +

= =

 
= + − + − 

 

−

−

−

∑ ∑

∑

∑

∑

∑ ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

0 0 4 4

5 0 0 0 0 5 5

1

j

n

j j j j
j=

t l t p t µ t n t ,

n' t = µ t n t p t + µ t l t p t µ t n t .













 −


 −


∑

 

 

Let µ0(t) = t
‒2

1.3
‒t
; µ1(t) = t

‒1
1.2

t
; µ2(t) = t

‒3
2.5

t
; µ3(t) = 0.1t + 2

‒t
; µ4(t) =  

= 0.5t + 1.5
‒t
; µ5(t) = t + 3

‒t
 , ( ) ( ) tt,t.t =

−
=

+

070
0

λλ , l0(t)=
( )[ ]

100000

1055sin +t
, where  

[.] - integer part, in parentheses. Solving the system (13) in the package Mathema-

tica, we obtain  

 

(13) 
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N0(t) = (1.3
‒t 

+ 1.2
‒t
)(t

2 
‒ 5t) + 17000; N1(t) = (2.5

‒t 
+ 1.2

-t
)(‒t

2
 + 5t) + 13000; 

N2(t) = (2.5
‒t 

+ 0.5
‒t
)(‒t

3 
+7t

2
+8t) + 25000; N3(t) = (0.7

‒t 
+ 1.3

‒t
)(t

2 
‒ 0.7t) + 23000; 

N4(t) = (0.9
‒t 

+ 3
‒t
)(t

2 
‒ 0.7t) + 12000; N5(t) = (0.9

‒t 
+ 3

‒t 
+ 0.5

‒t
)(t

2 
– 1.1t) + 10000. 

4. Conclusions 

In this paper, Markov QN with a limited number of the same type customers 

was investigated. The number of customers of systems varies in accordance with 

the process of birth and death. For obtaining a system of DE for an average number 

of customers in its systems, the method of diffusion approximation was applied,  

allowing one to find them with high accuracy for a big number of customers. The 

results may be useful in modelling and optimization of customer service in the  

insurance companies, banks, logistics companies and other organizations [10-12]. 
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